hihoCoder #1164 随机斐波那契
时间限制:5000ms
单点时限:1000ms
内存限制:256MB
描述
大家对斐波那契数列想必都很熟悉:
$a_0 = 1, a_1 = 1, a_i = a_{i-1} + a_{i-2}, (i > 1)$。
现在考虑如下生成的斐波那契数列:
$a_0 = 1, a_i = a_j + a_k, i > 0, j, k$从$[0, i-1]$的整数中随机选出($j$和$k$独立)。
现在给定$n$,要求求出$E(a_n)$,即各种可能的$a$数列中$a_n$的期望值。
输入
一行一个整数$n$,表示第$n$项。($1 \le n \le 500$)
输出
一行一个实数,表示答案。你的输出和答案的绝对或者相对误差小于$10^{-6}$时被视为正确答案。
样例解释
共存在3种可能的数列
1,2,2 1/4
1,2,3 1/2
1,2,4 1/4
所以期望为3。
样例输入
2
样例输出
3.000000
分析:这道题要特别注意j和k独立这个条件,在这个条件下我们可以得到$E(a_n)$(以下简写成$E_n$)的一个表达式
$E_n = 2S_{n-1} / n$, (1)
其中$S_n$定义成
$S_n = E_0 + E_1 + E_2 + \dots + E_n$
易见
$E_n = S_n - S_{n-1}$ (2)
下面我将从上面的两个式子出发推出$E_n$关于$n$的表达式。
(1)式即
$nE_n = 2 S_{n-1}$ (3)
从而亦有
$(n+1) E_{n+1} = 2 S_n$ (4)
(4) - (3)得
$(n+1) E_{n+1} - n E_n = 2 E_n$
移项
$(n+1) E_{n+1} = (n+2) E_n$
亦即
$\dfrac{E_{n+1}} {E_n} = \dfrac{n+2} {n+1}$ (5)
进而得到
$E_n = (n+1) E_0 = n+1$ (6)
P.S. hihoCoder上给的题解用归纳法证明了这个结论。
hihoCoder #1164 随机斐波那契的更多相关文章
- ACM学习历程—Hihocoder 1164 随机斐波那契(数学递推)
时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 大家对斐波那契数列想必都很熟悉: a0 = 1, a1 = 1, ai = ai-1 + ai-2,(i > 1). ...
- hihoCoder挑战赛11 A 随机斐波那契
算了前三项.....发现是个大水题... #include<stdio.h> int main() { int n; while (~scanf("%d", &am ...
- HihoCoder1164 随机斐波那契(概率DP)
描述 大家对斐波那契数列想必都很熟悉: a0 = 1, a1 = 1, ai = ai-1 + ai-2,(i > 1). 现在考虑如下生成的斐波那契数列: a0 = 1, ai = aj + ...
- hdu 2160 母猪的故事(睡前随机水一发)(斐波那契数列)
解题思路: 一只母猪生下第二头后立马被杀掉,可以这样想即,生下第二头便被杀掉,可以看成母猪数量没变 第一天 1 第二天 2 第三天 3 :第一头生第二头后杀掉还是1头,第二头再加上第二头生下的,一共三 ...
- hihoCoder #1143 : 骨牌覆盖问题·一 (斐波那契数列)
题意:我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 思路:这是斐波那契数列啊,f[n] = f[n-1] + f[n-2],初始时 f[ ...
- Python(迭代器 生成器 装饰器 递归 斐波那契数列)
1.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大优 ...
- python-Day4-迭代器-yield异步处理--装饰器--斐波那契--递归--二分算法--二维数组旋转90度--正则表达式
本节大纲 迭代器&生成器 装饰器 基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - ...
- 斐波那契数列F(n)【n超大时的(矩阵加速运算) 模板】
hihocoder #1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个 ...
- Python基础(二):斐波那契数列、模拟cp操作、生成8位随机密码
一.斐波那契数列 目标: 编写fib.py脚本,主要要求如下: 输出具有10个数字的斐波那契数列 使用for循环和range函数完成 改进程序,要求用户输入一个数字,可以生成用户需要长度的斐波那契数列 ...
随机推荐
- Android -- ActivityLifeCycleCallbacks
ActivityLifeCycleCallbacks Application通过此接口提供了一套回调方法,用于让开发者对Activity的生命周期事件进行集中处理. 为什么用ActivityLifec ...
- FineUI小技巧(3)表格导出与文件下载
需求描述 实际应用中,我们可能需要导出表格内容,或者在页面回发时根据用户权限下载文件(注意,这里的导出与下载,都是在后台进行的,和普通的一个链接下载文件不同). 点击按钮导出表格 由于FineUI 默 ...
- Hadoop简单安装配置
Hadoop开始设计以Linux平台为运行目标,所以这里推荐在Linux发行版比如Ubuntu进行安装,目前已经有Hadoop for Windows出来,大家自行搜下文章. Hadoop运行模式分为 ...
- react实现的tab切换组件
我有点想要吐槽,因为用原生的js实现起来挺简单的一个小东西,改用react来写却花了我不少时间,也许react的写法只有在复杂的web应用中才能体现出它的优势吧!不过吐槽归吐槽,对react这种优雅的 ...
- [Codevs1403]新三国争霸(MST+DP)
题目:http://codevs.cn/problem/1403/ 分析: 很容易想到对于某个确定的一天,就是求个最小生成树,又因为数据范围很小,所以可以暴力.但问题的关键是如果相邻两天的方案不同,就 ...
- 中继器、集线器(HUB)、网桥、交换机、路由器比较
中继器或集线器既不能隔离冲突域又不能隔离广播域,网桥或交换机只能隔离冲突域不能隔离广播域,路由器既能隔离冲突域又能隔离广播域,为什么?[解析] 首先要清楚什么是冲突域和广播域,当一块网卡发送信息时有可 ...
- go println与printf区别
Println 与Printf 都是fmt 包中的公共方法 Println :可以打印出字符串,和变量: Printf : 只可以打印出格式化的字符串,可以输出字符串类型的变量,不可以输出整形变量和整 ...
- LVS+Redis部署手册
Redis是一个开源,先进的key-value存储,并用于构建高性能,可扩展的Web应用程序的完美解决方案. Redis从它的许多竞争继承来的三个主要特点: Redis数据库完全在内存中,使用磁盘仅用 ...
- MyBatis学习--查询缓存
简介 以前在使用Hibernate的时候知道其有一级缓存和二级缓存,限制ORM框架的发展都是互相吸收其他框架的优点,在Hibernate中也有一级缓存和二级缓存,用于减轻数据压力,提高数据库性能. m ...
- struts2的核心和工作原理
struts2的核心和工作原理 设计目标 Struts设计的第一目标就是使MVC模式应用于web程序设计.技术优势 Struts2有两方面的技术优势,一是所有的Struts2应用程序都是基于clien ...