hihoCoder #1164 随机斐波那契
时间限制:5000ms
单点时限:1000ms
内存限制:256MB
描述
大家对斐波那契数列想必都很熟悉:
$a_0 = 1, a_1 = 1, a_i = a_{i-1} + a_{i-2}, (i > 1)$。
现在考虑如下生成的斐波那契数列:
$a_0 = 1, a_i = a_j + a_k, i > 0, j, k$从$[0, i-1]$的整数中随机选出($j$和$k$独立)。
现在给定$n$,要求求出$E(a_n)$,即各种可能的$a$数列中$a_n$的期望值。
输入
一行一个整数$n$,表示第$n$项。($1 \le n \le 500$)
输出
一行一个实数,表示答案。你的输出和答案的绝对或者相对误差小于$10^{-6}$时被视为正确答案。
样例解释
共存在3种可能的数列
1,2,2 1/4
1,2,3 1/2
1,2,4 1/4
所以期望为3。
样例输入
2
样例输出
3.000000
分析:这道题要特别注意j和k独立这个条件,在这个条件下我们可以得到$E(a_n)$(以下简写成$E_n$)的一个表达式
$E_n = 2S_{n-1} / n$, (1)
其中$S_n$定义成
$S_n = E_0 + E_1 + E_2 + \dots + E_n$
易见
$E_n = S_n - S_{n-1}$ (2)
下面我将从上面的两个式子出发推出$E_n$关于$n$的表达式。
(1)式即
$nE_n = 2 S_{n-1}$ (3)
从而亦有
$(n+1) E_{n+1} = 2 S_n$ (4)
(4) - (3)得
$(n+1) E_{n+1} - n E_n = 2 E_n$
移项
$(n+1) E_{n+1} = (n+2) E_n$
亦即
$\dfrac{E_{n+1}} {E_n} = \dfrac{n+2} {n+1}$ (5)
进而得到
$E_n = (n+1) E_0 = n+1$ (6)
P.S. hihoCoder上给的题解用归纳法证明了这个结论。
hihoCoder #1164 随机斐波那契的更多相关文章
- ACM学习历程—Hihocoder 1164 随机斐波那契(数学递推)
时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 大家对斐波那契数列想必都很熟悉: a0 = 1, a1 = 1, ai = ai-1 + ai-2,(i > 1). ...
- hihoCoder挑战赛11 A 随机斐波那契
算了前三项.....发现是个大水题... #include<stdio.h> int main() { int n; while (~scanf("%d", &am ...
- HihoCoder1164 随机斐波那契(概率DP)
描述 大家对斐波那契数列想必都很熟悉: a0 = 1, a1 = 1, ai = ai-1 + ai-2,(i > 1). 现在考虑如下生成的斐波那契数列: a0 = 1, ai = aj + ...
- hdu 2160 母猪的故事(睡前随机水一发)(斐波那契数列)
解题思路: 一只母猪生下第二头后立马被杀掉,可以这样想即,生下第二头便被杀掉,可以看成母猪数量没变 第一天 1 第二天 2 第三天 3 :第一头生第二头后杀掉还是1头,第二头再加上第二头生下的,一共三 ...
- hihoCoder #1143 : 骨牌覆盖问题·一 (斐波那契数列)
题意:我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 思路:这是斐波那契数列啊,f[n] = f[n-1] + f[n-2],初始时 f[ ...
- Python(迭代器 生成器 装饰器 递归 斐波那契数列)
1.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大优 ...
- python-Day4-迭代器-yield异步处理--装饰器--斐波那契--递归--二分算法--二维数组旋转90度--正则表达式
本节大纲 迭代器&生成器 装饰器 基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - ...
- 斐波那契数列F(n)【n超大时的(矩阵加速运算) 模板】
hihocoder #1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个 ...
- Python基础(二):斐波那契数列、模拟cp操作、生成8位随机密码
一.斐波那契数列 目标: 编写fib.py脚本,主要要求如下: 输出具有10个数字的斐波那契数列 使用for循环和range函数完成 改进程序,要求用户输入一个数字,可以生成用户需要长度的斐波那契数列 ...
随机推荐
- 【分布式协调器】Paxos的工程实现-Cocklebur状态转移
集群中的主机经过选举过程由Looking状态变为了Leadering或Following状态.而这些状态之间转移的条件是什么呢?先来个直观的,上状态图. 图 4.1 Cocklebur选举过程中的状态 ...
- jQuery学习笔记(四):attr()与prop()的区别
这一节针对attr()与prop()之间的区别进行学习. 先看看官方文档是如何解释两者之间功能差异的: attr() Get the value of an attribute for the fir ...
- checkboxlist 下拉框多选功能 ,模拟dropdownlist带复选框效果
前台代码 01.<html xmlns="http://www.w3.org/1999/xhtml"> 02.<head runat="server&q ...
- [BZOJ1854][Scoi2010]游戏(二分图匹配/并查集)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1854 分析:很裸的一道二分图匹配对吧,但是在hzwer的blog上看见神奇的并查集做法 ...
- GBDT(MART) 迭代决策树简介
以下对GBDT的介绍深入浅出,非常易懂 转自:http://blog.csdn.net/w28971023/article/details/8240756 GBDT(Gradient Boosting ...
- Spring学习进阶(四) Spring JDBC
Spring JDBC是Spring所提供的持久层技术.主要目的是降低使用JDBC API的门槛,以一种更直接,更简洁的方式使用JDBC API.在Spring JDBC里用户仅需要做哪些比不可少的事 ...
- 你需要知道的MySQL开源存储引擎TokuDB
在四月份的Percona Live MySQL会议上, TokuDB庆祝自己成为开源存储引擎整一周年.我现在仍能记得一年前它刚创建时的官方声明与对它的期望.当时的情况非常有意思,因为它拥有帮助MySQ ...
- 让apache后端显示真实客户端IP
公司是nginx做代理,后端的web服务用的是apache,然后我现在要分析日志,但是,我的apache日志上显示的是代理服务器的ip地址,不是客户的真实IP 所以这里我需要修改一下,让apache的 ...
- ES6新特性:利用解构赋值 (destructuring assignment), 简化代码
本文的Demo的运行环境为nodeJS, 参考:让nodeJS支持ES6的词法----babel的安装和使用 : 解构赋值是一种表达式, 利用这种新语法, 可以直接从数组或者对象中快速提取值 赋值给不 ...
- thinkphp全站静态页实现方法
1:在根目录下的全局index.php中加下面这行: define('HTML_PATH', './htm');//生成静态页面的文件位置 2:在项目的配置文件config.php中加下面这行: 'H ...