Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Summary: DP, calucate the minimun sum from start point to every cell unitil we traverse every cell, then just output the last cell.

    void goRight(int row_index, int column_index, int **grid_sum, vector<vector<int> > &grid) {
column_index ++ ;
int sum = grid_sum[row_index][column_index - ] + grid[row_index][column_index];
if(grid_sum[row_index][column_index] == - || sum < grid_sum[row_index][column_index])
grid_sum[row_index][column_index] = sum;
} void goDown(int row_index, int column_index, int **grid_sum, vector<vector<int> > &grid ) {
row_index ++;
int sum = grid_sum[row_index -][column_index] + grid[row_index][column_index];
if(grid_sum[row_index][column_index] == - || sum < grid_sum[row_index][column_index])
grid_sum[row_index][column_index] = sum;
} int minPathSum(vector<vector<int> > &grid) {
if( grid.size() <= || grid[].size() <=){
return ;
}else if ( grid.size() == ){
int sum = ;
for (auto item : grid[])
sum += item;
return sum;
}else if (grid.size() > && grid[].size() == ) {
int sum = ;
for ( auto item : grid)
sum += item[];
return sum;
}else {
int row_size = grid.size();
int column_size = grid[].size(); int ** grid_sum = new int *[row_size];
for( int i=; i< row_size; i++ )
{
grid_sum[i] = new int [column_size] ;
} for(int i = ; i< row_size; i ++){
for(int j =; j < column_size; j++)
grid_sum[i][j] = -;
} for(int i = ; i <= (row_size - + column_size -); i++) {
if (i == ) {
int row_index = ;
int column_index = ;
grid_sum[][] = grid[][];
if(row_index + < row_size)
goDown(row_index, column_index, grid_sum, grid);
if(column_index + < column_size)
goRight(row_index, column_index, grid_sum, grid);
}else {
int row_index = ;
int column_index = ;
for(row_index = ; row_index <= i; row_index ++ ){
if(row_index >= row_size )
continue;
column_index = i - row_index;
if(column_index >= column_size)
continue; if(row_index + < row_size)
goDown(row_index, column_index, grid_sum, grid);
if(column_index + < column_size)
goRight(row_index, column_index, grid_sum, grid);
}
}
} int sum = grid_sum[row_size - ][column_size - ];
for( int i=; i< row_size; i++ ) {
delete [] grid_sum[i];
}
delete grid_sum;
return sum;
}
}

Minimum Path Sum [LeetCode]的更多相关文章

  1. Minimum Path Sum——LeetCode

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  2. Minimum Path Sum leetcode java

    题目: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right w ...

  3. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  4. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  5. [Leetcode Week9]Minimum Path Sum

    Minimum Path Sum 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/minimum-path-sum/description/ Descr ...

  6. LeetCode 64. 最小路径和(Minimum Path Sum) 20

    64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...

  7. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  8. 【leetcode】Minimum Path Sum

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

  9. 【LeetCode练习题】Minimum Path Sum

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

随机推荐

  1. Linux系统编程--文件IO操作

    Linux思想即,Linux系统下一切皆文件. 一.对文件操作的几个函数 1.打开文件open函数 int open(const char *path, int oflags); int open(c ...

  2. How to use PEM of PPAS

    -bash-4.1$ pwd/opt/PostgresPlus/9.3AS/client-v4/scripts -bash-4.1$ lsclient launchPEMClient.sh -bash ...

  3. Leetcode: Repeated Substring Pattern

    Given a non-empty string check if it can be constructed by taking a substring of it and appending mu ...

  4. This application is modifying the autolayout engine from a background threa-线程错误

    警告提示:This application is modifying the autolayout engine from a background thread, which can lead to ...

  5. JS创建对象总结

    javascript创建对象的方法总结 Javascript创建对象 最简单的方法:创建object实例. var person=new Object(); person.name="Joe ...

  6. 构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(31)-MVC使用RDL报表

    系列目录 这次我们来演示MVC3怎么显示RDL报表,坑爹的微软把MVC升级到5都木有良好的支持报表,让MVC在某些领域趋于短板 我们只能通过一些方式来使用rdl报表. Razor视图不支持asp.ne ...

  7. 关于Navigation的BarButtonItem的

    (ios6.1)有两个controller在navigation stack里,A和B.A是B的previous view controller,现在top-level controller是B.要自 ...

  8. 使用Scala实现Java项目的单词计数:串行及Actor版本

    其实我想找一门“具有Python的简洁写法和融合Java平台的优势, 同时又足够有挑战性和灵活性”的编程语言. Scala 就是一个不错的选择. Scala 有很多语言特性, 建议先掌握基础常用的: ...

  9. DNS Prefetch

    DNS 实现域名到IP的映射.通过域名访问站点,每次请求都要做DNS解析.目前每次DNS解析,通常在200ms以下.针对DNS解析耗时问题,一些浏览器通过DNS Prefetch 来提高访问的流畅性. ...

  10. Weblogic 所有BEA错误代码详细信息列表

    范围 子系统 类别 BEA-000001 – BEA-009999 ConsensusLeasing DatabaseLessLeasing DatabaseLessLeasing BEA-00010 ...