对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为1的数有多少个?

第9次操作:结果1由2产生。1个被操作数
8:结果2只能由4产生。1个被操作数
7:结果4由8、3产生。2个
6:结果8由16、7产生;结果3由6产生。共3个
5:结果16由32、15产生;结果7由14产生;结果6由12、5产生。共5个…
每次操作,偶数(2除外)都由该数减1和该数的2倍得来,奇数只由该数的2倍得来
各次操作的操作对象个数为:1,1,2,3,5,8,13,21,34,…
本题可以通过所给的变换规律,由易到难,确定操作可变为1的数组成斐波拉契数列,再根据所发现的规律求出经过9次操作变为1的数的个数。

fib数列变种题目的更多相关文章

  1. 【bzoj5118】Fib数列2 费马小定理+矩阵乘法

    题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...

  2. HDU3977 Evil teacher 求fib数列模p的最小循环节

    In the math class, the evil teacher gave you one unprecedented problem! Here f(n) is the n-th fibona ...

  3. [bzoj5118]Fib数列2_费马小定理_矩阵乘法

    Fib数列2 bzoj-5118 题目大意:求Fib($2^n$). 注释:$1\le n\le 10^{15}$. 想法:开始一看觉得一定是道神题,多好的题面啊?结果...妈的,模数是质数,费马小定 ...

  4. FIB数列

    斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+ ...

  5. bzoj5104: Fib数列

    Description Fib数列为1,1,2,3,5,8... 求在Mod10^9+9的意义下,数字N在Fib数列中出现在哪个位置 无解输出-1 Input 一行,一个数字N,N < = 10 ...

  6. 动态规划之Fib数列类问题应用

    一,问题描述 有个小孩上楼梯,共有N阶楼梯,小孩一次可以上1阶,2阶或者3阶.走到N阶楼梯,一共有多少种走法? 二,问题分析 DP之自顶向下分析方式: 爬到第N阶楼梯,一共只有三种情况(全划分,加法原 ...

  7. UVaLive 3357 Pinary (Fib数列+递归)

    题意:求第 k 个不含前导 0 和连续 1 的二进制串. 析:1,10,100,101,1000,...很容易发现长度为 i 的二进制串的个数正好就是Fib数列的第 i 个数,因为第 i 个也有子问题 ...

  8. 1022. Fib数列

    https://acm.sjtu.edu.cn/OnlineJudge/problem/1022 Description 定义Fib数列:1,1,2,3,5,8,13,…1,1,2,3,5,8,13, ...

  9. 【BZOJ5104】Fib数列(BSGS,二次剩余)

    [BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\ ...

随机推荐

  1. C-指针

    //格式:变量类型 *变量名//定义了一个指针变量p//指针变量只能存储地址//指针就一个作用:能够根据一个地址值,访问对应的存储空间//指针变量p前面的int:指针变量p只能指向int类型的数据in ...

  2. Think in Java(Java编程思想)-第2章 一切都是对象

    1. String s = "asdf"//创建一个String引用,并初始化. String s = new String("asdf")//创建一个新对象, ...

  3. cmd /c和cmd /k 解释,附★CMD命令★ 大全

    cmd /c和cmd /k http://leaning.javaeye.com/blog/380810 java的Runtime.getRuntime().exec(commandStr)可以调用执 ...

  4. ubuntu系统下更新jdk版本

    1. 添加软件源 sudo add-apt-repository ppa:webupd8team/java 2. 更新软件源 sudo apt-get update 3. 安装 jdk1.8 sudo ...

  5. 如何在html结构标签中使用js 变量 生成可变化的 title标题?

    如果form的action不写, 或 action="", 那么就表示 将数据发送到 本文件 当前文件自身... 1. 在jquery的选择器中, $()括号中的内容是一个 exp ...

  6. 【CISP笔记】数据库及应用安全

    数据库安全特性检查工具美国应用安全公司的App Detective英国下一代软件公司的NGS SQuirrel 常见应用安全威胁 网络层面拒绝服务.电子欺骗.嗅探.……系统层面Web服务漏洞.配置错误 ...

  7. 大型网站SEO优化策略框架

  8. PPPoE名词解释

    PPPoE拔号的发现阶段(Discovery): PPPoE的发现阶段一共分为4步. 分别是: PADI(PPPoE Active Discovery Initiation) PADO(PPPoE A ...

  9. 题目1373:整数中1出现的次数(从1到n整数中1出现的次数)

    题目1373:整数中1出现的次数(从1到n整数中1出现的次数) 题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU发来求助信,希望亲们能帮帮他 ...

  10. linux 使用rpm安装软件时,遇到"warning: rpmts_HdrFromFdno: Header V3 RSA/SHA256 Signature, key ID fd431d51: NOKEY "错误

    建议的做法: warning: rpmts_HdrFromFdno: Header V3 RSA/SHA256 Signature, key ID fd431d51: NOKEY    网上资料说这是 ...