BZOJ 1415

 #include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int Maxn=;
int t[Maxn],n,m,S,T,now,p[Maxn][Maxn],head[Maxn],dis[Maxn],u,v,cnt;
double f[Maxn][Maxn];
struct EDGE
{
int to,next;
}edge[Maxn<<];
inline void Add(int u,int v)
{edge[cnt].to=v;edge[cnt].next=head[u];head[u]=cnt++;}
void Dfs(int u,int top)
{
for (int i=head[u];i!=-;i=edge[i].next)
if (dis[edge[i].to]==- || dis[edge[i].to]>dis[u]+ || (dis[edge[i].to]==dis[u]+ && p[now][edge[i].to]>top))
{
dis[edge[i].to]=dis[u]+;
p[now][edge[i].to]=top;
Dfs(edge[i].to,top);
}
}
double F(int S,int T)
{
if (f[S][T]!=) return f[S][T];
if (S==T) return ;
if (p[p[S][T]][T]==T || p[S][T]==T) return ;
double res=;
for (int i=head[T];i!=-;i=edge[i].next)
res+=F(p[p[S][T]][T],edge[i].to);
res+=F(p[p[S][T]][T],T);
res/=(double)(t[T]+1.0);
res+=;
return f[S][T]=res;
}
int main()
{
scanf("%d%d",&n,&m);
scanf("%d%d",&S,&T);
memset(head,-,sizeof(head));
for (int i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
Add(u,v),Add(v,u);
t[u]++; t[v]++;
} for (int i=;i<=n;i++)
{
memset(dis,-,sizeof(dis));
dis[i]=;
for (int j=head[i];j!=-;j=edge[j].next)
{
now=i;
dis[edge[j].to]=;
Dfs(edge[j].to,edge[j].to);
}
for (int j=head[i];j!=-;j=edge[j].next) p[i][edge[j].to]=edge[j].to;
}
printf("%.3lf\n",F(S,T));
return ;
}

C++

BZOJ 1419

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int Maxn=;
double f[][Maxn];
int R,B,cur;
inline double Max(double x,double y) {return x>y?x:y;}
int main()
{
scanf("%d%d",&R,&B);
for (int i=;i<=R;i++)
{
cur^=;
for (int j=;j<=B;j++)
{
if (i==) {f[cur][j]=; continue;}
if (j==) {f[cur][j]=f[cur^][j]+;continue;}
f[cur][j]=Max(,(f[cur^][j]+1.0)*((double)(i)/(double)(i+j))+(f[cur][j-]-1.0)*((double)(j)/(double)(i+j))); }
}
printf("%.6lf\n",f[cur][B]-5e-);
return ;
}

C++

算法合集之《浅析竞赛中一类数学期望问题的解决方法》中有对题目的讲解。

HDU 4405 期望貌似是倒着推的,F[i]=∑F[i+k](k=1~6) /6+1;  但因为又加了一步所以要加一。可以直接跳到的则期望是一样的。

 #include <cstdio>
#include <cstring>
const int Maxn=;
int vis[Maxn],n,m,u,v;
double F[Maxn];
int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
if (n== && m==) break;
memset(vis,-,sizeof(vis));
for (int i=;i<=m;i++) scanf("%d%d",&u,&v),vis[u]=v;
memset(F,,sizeof(F));
for (int i=n-;i>=;i--)
if (vis[i]==-)
{
for (int j=;j<=;j++) F[i]+=F[i+j]/6.0;
F[i]=F[i]+;
} else
F[i]=F[vis[i]];
printf("%.4lf\n",F[]);
}
return ;
}

C++

HDU 4089 至今还不是很清楚怎么退的。。

 #include <cstdio>
const int Maxn=;
const double eps=1e-;
double F[Maxn][Maxn],p1,p2,p3,p4,x[Maxn],z[Maxn];
int n,m,k;
int main()
{
while (scanf("%d%d%d%lf%lf%lf%lf",&n,&m,&k,&p1,&p2,&p3,&p4)!=EOF)
{
if (p4<eps) {puts("0.00000");continue;}
double p21=p2/(-p1),p31=p3/(-p1),p41=p4/(-p1);
F[][]=p4/(-p2-p1);
for (int i=;i<=n;i++)
{
x[]=p21; z[]=p41;
for (int j=;j<=i;j++)
{
x[j]=x[j-]*p21;
z[j]=p31*F[i-][j-]+p21*z[j-];
if (j<=k) z[j]+=p41;
}
F[i][i]=z[i]/(-x[i]);
for (int j=;j<i;j++) F[i][j]=x[j]*F[i][i]+z[j];
}
printf("%.5lf\n",F[n][m]);
}
return ;
}

C++

POJ 2096 一直末状态推终状态。

 #include<cstdio>
const int Maxn=;
double F[Maxn][Maxn];
int n,s;
int main()
{
while(scanf("%d%d",&n,&s)!=EOF)
{
F[n][s]=;
for(int i=n;i>=;i--)
for(int j=s;j>=;j--)
{
if(i==n && j==s) continue;
F[i][j]=(i*(s-j)*F[i][j+]+(n-i)*j*F[i+][j]+(n-i)*(s-j)*F[i+][j+]+n*s)/(n*s-i*j);
}
printf("%.4f\n",F[][]);
}
return ;
}

C++

POJ 3744 矩阵乘法加速线性表达式递推。

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int Maxn=;
struct Matrix {double a[][]; int x,y;};
int n,a[Maxn];
double p,Ans;
inline Matrix operator * (Matrix A,Matrix B)
{
Matrix C; C.x=A.x,C.y=B.y;
memset(C.a,,sizeof(C.a));
for (int i=;i<=A.x;i++)
for (int j=;j<=A.y;j++)
for (int k=;k<=B.y;k++)
C.a[i][j]+=A.a[i][k]*B.a[k][j];
return C;
}
inline Matrix Pow(Matrix x,int y)
{ Matrix Ret; Ret.x=,Ret.y=;
memset(Ret.a,,sizeof(Ret.a));
Ret.a[][]=Ret.a[][]=; while (true)
{
if (y&) Ret=Ret*x;
x=x*x; y>>=;
if (y==) break;
}
return Ret;
} double Get(int t)
{
if (t<=) return ;
if (t==) return ;
if (t==) return p;
t-=;
Matrix M;
M.x=M.y=;
M.a[][]=p;
M.a[][]=-p;
M.a[][]=;
M.a[][]=;
M=Pow(M,t);
return M.a[][]*p+M.a[][];
} int main()
{
while (scanf("%d%lf",&n,&p)!=EOF)
{
for (int i=;i<=n;i++) scanf("%d",&a[i]);
sort(a+,a+n+);
Ans=;
for (int i=;i<=n;i++)
Ans=Ans*Get(a[i]-a[i-])*(1.0-p);
printf("%.7lf\n",Ans);
}
return ;
}

C++

POJ 3071 直接DP即可

 #include <cstdio>
#include <cstring>
double F[][],p[][];
int n,Ans;
int main()
{
while (scanf("%d",&n)!=EOF)
{
if (n==-) break;
memset(F,,sizeof(F));
for (int i=;i<=(<<n);i++)
for (int j=;j<=(<<n);j++) scanf("%lf",&p[i][j]);
for (int i=;i<=(<<n);i++) F[][i]=1.0;
for (int i=;i<=n;i++)
for (int j=;j<=(<<n);j++)
for (int k=;k<=(<<n);k++)
if (((j-)>>(i-)^)==((k-)>>i-))
F[i][j]+=F[i-][j]*F[i-][k]*p[j][k];
double Ret=;
for (int i=;i<=(<<n);i++)
if (F[n][i]>Ret) Ans=i,Ret=F[n][i];
printf("%d\n",Ans);
}
return ;
}

C++

期望DP的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  10. uva11600 状压期望dp

    一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...

随机推荐

  1. 20160308001 GridView的Sorting排序

    参考地址: http://www.cnblogs.com/yinluhui0229/archive/2011/08/01/2124169.html 功能介绍:单击gridview的某一列列头,可以对该 ...

  2. aliyun的yum源(国内速度极快)

    公网(家里宽带下载速度达到1-3.5M): http://mirrors.aliyun.com/repo/Centos-6.repo 内网(购买的阿里云主机可以访问): http://mirrors. ...

  3. GZFramwork快速开发框架之窗体设计说明

    1.  明细页数据源获取(基类已经处理) 重载GetEditData方法,此方法为自定义获得明细也的数据源,用于绑定明细页,此返回值会赋值给EditData //根据主键获得数据编辑页的数据 publ ...

  4. centos7 gradle

    cd /usr/local wget https://downloads.gradle.org/distributions/gradle-2.13-bin.zip unzip gradle-2.13- ...

  5. CSS 3中边框怎么用

    (1)设置边框图片的来源 图片边框默认只在四个顶点显示 none: 无背景图片; border-image-source: url('borderImage.png'); (2)边框图片的分割 将图片 ...

  6. 转json using指令

    using Newtonsoft.Json;using Newtonsoft.Json.Converters; string result = JsonConvert.SerializeObject( ...

  7. Windows7系统下JAVA运行环境下载、安装和设置(第二次更新:2012年03月14日)

    1.下载 地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html,(由于Sun于2009年被oracle收购所以网址 ...

  8. dedecms最新版本修改任意管理员漏洞+getshell+exp

    此漏洞无视gpc转义,过80sec注入防御. 补充下,不用担心后台找不到.这只是一个demo,都能修改任意数据库了,还怕拿不到SHELL? 起因是全局变量$GLOBALS可以被任意修改,随便看了下,漏 ...

  9. apache开启.htaccess

    1 . 如何让的本地APACHE开启.htaccess 如何让的本地APACHE开启.htaccess呢?其实只要简朴修改一下apache的httpd.conf设置就让APACHE.htaccess了 ...

  10. C# Enum 简易权限设计 使用FlagsAttribute属性

    基本權限設計: /// <summary> /// 權限列舉 /// </summary> [FlagsAttribute] public enum Permissions { ...