Codeforces 687B. Remainders Game[剩余]
1 second
256 megabytes
standard input
standard output
Today Pari and Arya are playing a game called Remainders.
Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value for any positive integer x?
Note, that means the remainder of x after dividing it by y.
The first line of the input contains two integers n and k (1 ≤ n, k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.
The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).
Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.
4 5
2 3 5 12
Yes
2 7
2 3
No
In the first sample, Arya can understand because 5 is one of the ancient numbers.
In the second sample, Arya can't be sure what is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.
题意:有数字x和k,x未知;知道x mod ci的结果,问x mod k是否唯一
官方题解:
Hint
Assume the answer of a test is No. There must exist a pair of integers x1 and x2 such that both of them have the same remainders after dividing by any ci, but they differ in remainders after dividing by k. Find more facts about x1 and x2!
Solution
Consider the x1 and x2 from the hint part. We have x1 - x2 ≡ 0 () for each 1 ≤ i ≤ n.
So:
We also have (). As a result:
We've found a necessary condition. And I have to tell you it's also sufficient!
Assume , we are going to prove there exists x1, x2 such that x1 - x2 ≡ 0 () (for each 1 ≤ i ≤ n), and ().
A possible solution is x1 = lcm(c1, c2, ..., cn) and x2 = 2 × lcm(c1, c2, ..., cn), so the sufficiency is also proved.
So you have to check if lcm(c1, c2, ..., cn) is divisible by k, which could be done using prime factorization of k and ci values.
For each integer x smaller than MAXC, find it's greatest prime divisor gpdx using sieve of Eratosthenes in .
Then using gpd array, you can write the value of each coin as p1q1p2q2...pmqm where pi is a prime integer and 1 ≤ qi holds. This could be done in by moving from ci to and adding gpdci to the answer. And you can factorize k by the same way. Now for every prime p that , see if there exists any coin i that the power of p in the factorization of ci is not smaller than the power of p in the factorization of k.
Complexity is .
题解前一部分比较好,后面还用筛法太扯了,质因数分解不用判质数
假设有两个x1和x2,如果x mod k不唯一的话则x1和x2满足:
x1-x2≡0(mod ci)----->lcm(c1,c2,..,cn)|x1-x2
x1-x2!≡0(mod k)
那么:
最小的x1-x2就是lcm
代入得lcm!≡0(mod k) 也就是k!|lcm
质因数分解k判断每个质因子是否是某个ci 的约数,如果全是则可以整除,解唯一,一定可以猜出
//
// main.cpp
// cf687b
//
// Created by Candy on 9/20/16.
// Copyright © 2016 Candy. All rights reserved.
// #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e6+;
int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,k,c[N];
bool check(int a){
for(int i=;i<=n;i++) if(c[i]%a==) return ;
return ;
}
int main(int argc, const char * argv[]) {
n=read();k=read();
for(int i=;i<=n;i++) c[i]=read();
for(int i=;i<=k;i++){
int a=;
while(k%i==) a*=i,k/=i;
if(a!=&&!check(a)){printf("No");return ;}
}
printf("Yes");
return ;
}
Codeforces 687B. Remainders Game[剩余]的更多相关文章
- codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)
题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...
- CodeForces 687B Remainders Game
数论. 如果$x$不唯一,假设存在两个解,较大的为${x_1}$,较小的为${x_2}$. 那么, $\left\{ {\begin{array}{*{20}{c}}{{x_1}\% {c_i} = ...
- CodeForces 687B Remainders Game(数学,最小公倍数)
题意:给定 n 个数,一个数 k,然后你知道一个数 x 取模这个 n 个的是几,最后问你取模 k,是几. 析:首先题意就看了好久,其实并不难,我们只要能从 n 个数的最小公倍数是 k的倍数即可,想想为 ...
- 【16.56%】【codeforces 687B】Remainders Game
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- Codeforces Round #360 (Div. 2) D. Remainders Game 中国剩余定理
题目链接: 题目 D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes 问题描述 To ...
- Codeforces Round #360 (Div. 2) D. Remainders Game 数学
D. Remainders Game 题目连接: http://www.codeforces.com/contest/688/problem/D Description Today Pari and ...
- Codeforces Educational Codeforces Round 5 E. Sum of Remainders 数学
E. Sum of Remainders 题目连接: http://www.codeforces.com/contest/616/problem/E Description The only line ...
- Codeforces Round #360 (Div. 2) D. Remainders Game
D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- codeforces 688D D. Remainders Game(中国剩余定理)
题目链接: D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes input stan ...
随机推荐
- php扩展php_curl windows 安装问题
关于安装php扩展php_curl 出现的提示错误,导致php_curl无法安装 apache 错误日志: PHP Warning: PHP Startup: in Unknown on line 0 ...
- Session Storage、Cache Storage
Session Storage sessionStorage用于本地存储一个会话(session)的数据,这些数据只有在同一个会话中的页面才能访问并且当会话结束后数据也随之销毁(浏览器关闭).因此se ...
- JavaScript 开发者经常忽略或误用的七个基础知识点(转)
JavaScript 本身可以算是一门简单的语言,但我们也不断用智慧和灵活的模式来改进它.昨天我们将这些模式应用到了 JavaScript 框架中,今天这些框架又驱动了我们的 Web 应用程序.很多新 ...
- word开发遇到的问题
1.系统不能安装多个office word版本,建议只安装一个2003版本,越完整越好. 2.安装时候ghost系统会遇到问题,由于很多组件没有完整的安装,因此缺少了很多安装时文件保护要进行提醒的dl ...
- sharepoint列表如何进行随机取几条记录?
sharepoint列表如何进行随机取记录?由于itemid是不连续.可能存在删除添加等操作导致 我们可以采用随机取第几条记录.把记录集合取出来.产生随机第几条数.这里关键是如何产生不重复的随机数 方 ...
- OpenGL显示图片
最近想用C++在windows下实现一个基本的图像查看器功能,目前只想到了使用GDI或OpenGL两种方式.由于实在不想用GDI的API了,就用OpenGL的方式实现了一下基本的显示功能. 用GDAL ...
- Kotlin:Android世界的Swift
转自:http://www.infoq.com/cn/news/2015/06/Android-JVM-JetBrains-Kotlin Kotlin是一门与Swift类似的静态类型JVM语言,由Je ...
- ubuntu 12.04 react-native 安装
1.安装nodejs 和npm apt-get install nodejs apt-get install npm 2. 升级node js 和npm sudo npm cache clean -f ...
- C语言ASCII码、运算符优先级、转义字符
- Python语法基础
# coding=utf-8import random teacher = (1 < 3) and (2 > 5)print (teacher) index = random.randin ...