题目链接

题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余。

题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友就打表找到公式了,然后我就写了一个快速幂加个费马小定理就过了去看别的题了,赛后找到了一个很不错的博客:传送门,原来这道题也可以用DP+矩阵快速幂AC。下面说下组合数学的做法:

首先一共有4^n种情况,我们减去不符合条件的情况就行了,从中取k个进行染红绿色一共C(n,k)种情况,剩下的蓝黄色一共有2^(n-k)种情况,接下来对k的奇偶进行分类讨论。(借用下博客里的公式)

如果k为奇数,红色和绿色的数量为一奇一偶:2 * (c(k, 1) + c(k, 3) + c(k, 5) +……)* c(n, k) * 2^(n - k)   (其中要乘以2,是因为可以分别选择红、绿色为奇数)
如果k为偶数,红色和绿色的数量全部为奇数:(c(k, 1) + c(k, 3) + c(k, 5) +……)* c(n, k) * 2^(n - k) (这里不需要乘以2)
而 c(k, 1) + c(k, 3) + c(k, 5) +…… = 2^(k - 1)
所以,最后的表达式为:
4^n - 2^n*c(n, 1) - 2^(n - 1)*c(n, 2) - 2^n*c(n, 3) - 2^(n-1)*c(n, 4)-……
= 4^n - 2^n*2^(n-1) - 2^(n-1)*(2^(n-1)-1)
= 4^(n-1) + 2^(n-1)
在计算过程中我们发现k奇数的时候没有问题是 2*2^(n-1)*2^(n-1)
k偶数的时候要把k=0的情况算上所以要减去一个1,因为k=0是符合情况的不需要减去,这样就没问题了。
另外这题不用费马小定理也能AC。
#include <cstdio>
using namespace std;
typedef long long ll;
const ll mod=;
ll n;
ll pow1(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&)
ans=ans*a%mod;
b>>=;
a=a*a%mod;
}
return ans;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld",&n);
n%=(mod-);
if(n==) n=mod-;
ll ans=pow1(,n-);
ans=(ans*ans%mod+ans)%mod;
printf("%lld\n",ans);
}
return ;
}

poj 3734 Blocks 快速幂+费马小定理+组合数学的更多相关文章

  1. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  2. HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  3. hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)

    Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...

  4. M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  5. hdu4549矩阵快速幂+费马小定理

    转移矩阵很容易求就是|0  1|,第一项是|0| |1  1|             |1| 然后直接矩阵快速幂,要用到费马小定理 :假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(m ...

  6. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  7. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

  8. HDU 5667 Sequence【矩阵快速幂+费马小定理】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意: Lcomyn 是个很厉害的选手,除了喜欢写17kb+的代码题,偶尔还会写数学题.他找到 ...

  9. hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...

随机推荐

  1. [译]Mongoose指南 - 中间件

    中间件是一些函数, 当document发生init, validate, save和remove方法的时候中间件发生. 中间件都是document级别的不是model级别的. 下面讲讲两种中间件pre ...

  2. linux远程复制和压缩文件的命令

    1.linux导出指定数据库表 mysqldump  127.0.0.1  -uname -ppwd  databasename  tablename>/home/name/tablename. ...

  3. H5案例分享:html5重力感应事件

    html5重力感应事件 一.手机重力感应图形分析 1.设备围绕z轴的旋转角度为α,α角度的取值范围在[0,360). 设备在初始位置,与地球(XYZ)和身体(XYZ)某个位置对齐. 设备围绕z轴的旋转 ...

  4. 支付宝Payto接口的C#.net实现方法

    例一: using System; using System.Data; using System.Configuration; using System.Collections; using Sys ...

  5. canvas对象arcTo函数的使用-遁地龙卷风

    (-1)环境说明 我使用的浏览器是chrome49 (1)详细介绍 $(function() { var context = lol.getContext("2d"); conte ...

  6. Error 0x800704cf

    重装了系统,改过网络配置,结果共享和打印机连不上,显示Error 0x800704cf 在本地连接的属性里将"Client for Microsoft Networks"勾选上就可 ...

  7. ubuntu14.04显卡驱动问题(amd5600k集显7650d)

    安装ubuntu的时候,多次莫名其妙地黑屏,起初以为是最新得ubuntu14.04安装包不稳定,所以一直尝试了很多次. 重启-->安装-->黑屏(硬盘仍在转动,屏幕上什么都没有)--> ...

  8. python——tuple元组

    >>> dir(tuple) ['__add__', '__class__', '__contains__', '__delattr__', '__doc__', '__eq__', ...

  9. Java Log4j日志使用

    在程序中使用log4j 1.导入包import org.apache.log4j.Logger;import org.apache.log4j.PropertyConfigurator; 2.获取lo ...

  10. 18.4---2出现了几次(CC150)

    思路:1,先给出LTE的代码: public static int countNumberOf2s(int n) { // write code here int res = 0; for(int i ...