问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) 达到最大值或最小值的点的集合, 即 \(S=\{(b_1,b_2,\cdots,b_n)\in\mathbb{R}^n\,|\) \(f(x_1,x_2,\cdots,x_n)\leq\)\(f(b_1,b_2,\cdots,b_n)\), \(\forall\,(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n\}\)\(\cup\)\(\{(b_1,b_2,\cdots,b_n)\in\mathbb{R}^n\,|\) \(f(x_1,x_2,\cdots,x_n)\geq\)\(f(b_1,b_2,\cdots,b_n)\), \(\forall\,(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n\}\). 假设 \(f(x_1,x_2,\cdots,x_n)\) 是关于未定元 \(x_1,x_2,\cdots,x_n\) 的对称多项式并且 \(S\) 为有限非空集合, 证明: 存在 \(b\in\mathbb{R}\) 使得 \[S=\{(b,b,\cdots,b)\}.\]

例  以下总是假设 \(n\geq 2\).

(1) \(f(x_1,x_2,\cdots,x_n)=x_1^2\) 不是 \(n\) 元对称多项式, \(S=\{(0,b_2,\cdots,b_n)\in\mathbb{R}^n\}\) 是一个无限集, 此时上述问题的结论不成立.

(2) \(f(x_1,x_2,\cdots,x_n)=(x_1+x_2+\cdots+x_n)^2\) 是对称多项式, 但 \(S=\{(b_1,b_2,\cdots,b_n)\in\mathbb{R}^n\,|\) \(b_1+b_2+\cdots+b_n=0\}\) 是无限集, 此时上述问题的结论不成立.

(3) \(f(x_1,x_2,\cdots,x_n)=x_1^2+x_2^2+\cdots+x_n^2\), \(S=\{(0,0,\cdots,0)\}\), 此时上述问题的结论成立.

  上述问题改编自13级某位同学问我的非正式问题。他说:“高中老师说,对称多项式达到最大值或最小值的点一定形如 \((b,b,\cdots,b)\) 。”上面的例(2)告诉我们,他的高中老师说的是不对的,至少还差了条件,上述问题就是考虑了次数等于2的情形。问题的证明还是有一定难度的,希望大家能踊跃尝试各种方法进行解答。

[问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)的更多相关文章

  1. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  2. 复旦高等代数 II(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...

  3. 复旦高等代数II(18级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...

  4. [问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)

    [问题2014S06]  试用有理标准型理论证明13级高等代数I期末考试最后一题: 设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间,  \(\varphi\) 为 \(V\) 上的线 ...

  5. [问题2014S03] 复旦高等代数II(13级)每周一题(第三教学周)

    [问题2014S03]  设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, ...

  6. 复旦高等代数II(16级)每周一题

    每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...

  7. [问题2014S07] 复旦高等代数II(13级)每周一题(第七教学周)

    [问题2014S07]  设 \(A\in M_n(\mathbb{K})\) 在数域 \(\mathbb{K}\) 上的初等因子组为 \(P_1(\lambda)^{e_1},P_2(\lambda ...

  8. [问题2014S08] 复旦高等代数II(13级)每周一题(第八教学周)

    [问题2014S08]  设分块上三角阵 \[A=\begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix},\] 其中 \(m\) 阶方阵 \( ...

  9. [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)

    [问题2014S09]  证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...

随机推荐

  1. time模块目录下自己建立一个名为log的文件夹

    使用python调用ping命令,然后在日志中记录ping的结果,用来监测网络连通情况. 代码: [python]from time import *from subprocess import *w ...

  2. IOS第13天(1,私人通讯录,登陆功能,界面的跳转传值,自定义cell,编辑界面)

    ******HMLoginViewController 登陆的界面 #import "HMLoginViewController.h" #import "MBProgre ...

  3. IOS第12天(2,UINavigationController导航控制器)

    ****HMAppDelegate.m @implementation HMAppDelegate - (BOOL)application:(UIApplication *)application d ...

  4. IOS第11天(2:UIPickerView自定义国旗选择)

    国旗选择 #import "HMViewController.h" #import "HMFlag.h" #import "HMFlagView.h& ...

  5. 动态给drawable上色

    只加载一个资源,然后在运行的时候通过ColorFilter进行上色 public Drawable colorDrawable(Resources res, @DrawableRes int draw ...

  6. 关于怎样解决eclipse打开时出现的Failed to load the JNIshared library亲测有效

    之前一直可以正常使用eclipse但是当我装了Oracle后打开后就出现了Failed to load the JNIshared library(下面还出现了一个jvm.dll的文件路径),当时就蒙 ...

  7. Java-马士兵设计模式学习笔记-代理模式-动态代理 调用Proxy.newProxyInstance()

    一.概述 1.目标:不自己写代理类,利用Proxy.newProxyInstance()动态生成 2.用到的知识点: (1)//编译源码,生成class,注意编译环境要换成jdk才有compiler, ...

  8. UIView添加手势

    _shareImage.userInteractionEnabled=YES; UITapGestureRecognizer *imagegesture=[[UITapGestureRecognize ...

  9. ++i 与 i++ 区别

    i++返回原来的值 ++i 返回i+1的值   但是i++  i的值也会增加1 但是返回还是原来的值 int i = 1; i = i++; System.out.println(i); 输出 1 i ...

  10. 怎样将BigDecimal转换成Int

    BigDecimal a=new BigDecimal(12.88); int b=a.intValue(); System.out.println(b);//b=12;