[BZOJ1998][Hnoi2010]Fsk物品调度
[BZOJ1998][Hnoi2010]Fsk物品调度
试题描述
现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位。流水线上有n个位置,从0到n-1依次编号,一开始0号位置空,其它的位置i上有编号为i的盒子。Lostmonkey要按照以下规则重新排列这些盒子。 规则由5个数描述,q,p,m,d,s,s表示空位的最终位置。首先生成一个序列c,c0=0,ci+1=(ci*q+p) mod m。接下来从第一个盒子开始依次生成每个盒子的最终位置posi,posi=(ci+d*xi+yi) mod n,xi,yi是为了让第i个盒子不与之前的盒子位置相同的由你设定的非负整数,且posi还不能为s。如果有多个xi,yi满足要求,你需要选择yi最小的,当yi相同时选择xi最小的。 这样你得到了所有盒子的最终位置,现在你每次可以把某个盒子移动到空位上,移动后原盒子所在的位置成为空位。请问把所有的盒子移动到目的位置所需的最少步数。
输入
第一行包含一个整数t,表示数据组数。接下来t行,每行6个数,n,s,q,p,m,d意义如上所述。 对于30%的数据n<=100,对于100%的数据t<=20,n<=100000,s
输出
对于每组数据输出一个数占一行,表示最少移动步数。
输入示例
输出示例
数据规模及约定
t<=20,n<=100000
题解
刚刚在火车上调出了这道题。。。
关键在于如何求 pos 数组,不难发现式子中 d 是固定的,所以 xi 每增加 1,posi 就要增加 d,而 yi 每增加 1,posi 会增加 1.
再看看题目要求优先考虑令 yi 最小,即,固定 yi,改变 xi.假设我们已经把 yi 固定下来了,则可以将 1~n 的数按照对 d 取余得到的余数分类,通过 ci 和固定下来的 yi 的值确定要找的数在哪类,选取没有被选过的且离 ci “向右距离”(从 ci 出发向右走,遇到 n 就回到 0,继续向右到达该数所需的步数)最近的那个数就行了,可以用个并查集实现。那么如何固定 yi 呢?类似地,也可以对于每一类数建立一个并查集,当某一类数都被选取后,将该节点与左右合并,查找时找没有满的且离 yi + ci 所属的类“向右距离”最近的一类即可。
最后求步数不妨放自己yy。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; #define maxn 100010
#define LL long long
int n, s, q, p, m, d, gcdnd, pos[maxn];
bool has[maxn], h2[maxn]; int fa[maxn], siz[maxn];
int findset(int x) { return x == fa[x] ? x : fa[x] = findset(fa[x]); }
int f2[maxn];
int find2(int x) { return x == f2[x] ? x : f2[x] = find2(f2[x]); }
int nxt(int x) { return (x + d) % n; }
int pre(int x) { return (x - d + n) % n; }
LL gcd(LL a, LL b) { return !b ? a : gcd(b, a % b); }
void add(int u, int x) {
has[u] = 1;
int v = findset(nxt(u));
if(has[v]) fa[u] = v;
v = findset(pre(u)); u = findset(u);
if(u != v) { if(has[v]) fa[v] = u; }
else {
h2[x] = 1; int xx = find2(x);
if(x < gcdnd - 1 && h2[x+1]){ v = find2(x + 1); if(x != v) f2[x] = v; }
if(x && h2[x-1]){ v = find2(x - 1); if(x != v) f2[v] = x; }
}
return ;
} int main() {
int T; scanf("%d", &T);
while(T--) {
scanf("%d%d%d%d%d%d", &n, &s, &q, &p, &m, &d); d %= n;
// n = read(); s = read(); q = read(); p = read(); m = read(); d = read() % n;
gcdnd = gcd(n, d);
memset(has, 0, sizeof(has));
memset(h2, 0, sizeof(h2));
has[s] = 1;
for(int i = 0; i < n; i++) fa[i] = i;
for(int i = 0; i < gcdnd; i++) f2[i] = i;
LL c = 0;
for(int i = 1; i < n; i++) {
c = (c * q + p) % m;
LL cd = c % n % gcdnd;
int y = find2(cd); if(h2[y]) y++; if(y >= gcdnd){ y = find2(0); if(h2[y]) y++; }
int u;
if(y - cd >= 0){ u = findset((c % n + y - cd) % n); if(has[u]) u = nxt(u); }
else { u = findset((c % n + y - cd + gcdnd) % n); if(has[u]) u = nxt(u); }
add(u, y); pos[i] = u;
} // for(int i = 1; i < n; i++) printf("%d ", pos[i]); puts("\n");
for(int i = 0; i < n; i++) fa[i] = i, siz[i] = 1;
for(int i = 1; i < n; i++) {
int u = findset(i), v = findset(pos[i]);
if(u != v) fa[v] = u, siz[u] += siz[v], siz[v] = 0;
}
for(int i = 0; i < n; i++) pos[i] = findset(i);
sort(pos, pos + n);
int ans = 0;
for(int i = 0; i < n; i++) if((!i || pos[i] != pos[i-1]) && siz[pos[i]] > 1) ans += siz[pos[i]] + 1;
if(siz[findset(0)] > 1) ans -= 2;
printf("%d\n", ans);
} return 0;
}
[BZOJ1998][Hnoi2010]Fsk物品调度的更多相关文章
- 【BZOJ 1998】 1998: [Hnoi2010]Fsk物品调度(双向链表+并查集+置换)
1998: [Hnoi2010]Fsk物品调度 Description 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置,从0到n-1依次编号 ...
- BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换
BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换 Description 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置 ...
- 【BZOJ】1998: [Hnoi2010]Fsk物品调度
http://www.lydsy.com/JudgeOnline/problem.php?id=1998 题意: 给你6个整数$n,s,q,p,m,d$. 有$n$个位置和$n-1$个盒子,位置编号从 ...
- BZOJ 1998: [Hnoi2010]Fsk物品调度 [置换群 并查集]
传送门 流水线上有n个位置,从0到n-1依次编号,一开始0号位置空,其它的位置i上有编号为i的盒子.Lostmonkey要按照以下规则重新排列这些盒子. 规则由5个数描述,q,p,m,d,s,s表示空 ...
- 【BZOJ 1998】[Hnoi2010]Fsk物品调度 置换群+并查集
置换群的部分水得一比,据说是经典的置换群理论(然而我并不知道这理论是啥).重点就在于怎么求pos!!!容易发现这个东西是这样的:每次寻找pos,先在本环里找,找不到再往下一个环里找,直到找到为止……一 ...
- 【BZOJ1998】[HNOI2010]物品调度(并查集,模拟)
[BZOJ1998][HNOI2010]物品调度(并查集,模拟) 题面 BZOJ,为啥这题都是权限题啊? 洛谷 题解 先不管\(0\)位置是个空,把它也看成一个箱子.那么最终的答案显然和置换循环节的个 ...
- [HNOI2010] 物品调度 fsk
标签:链表+数论知识. 题解: 对于这道题,其实就是两个问题的拼凑,我们分开来看. 首先要求xi与yi.这个可以发现,x每增加1,则pos增加d:y每增加1,则pos增加1.然后,我们把x与y分别写在 ...
- [HNOI2010]物品调度
题目描述 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置,从0到n-1依次编号,一开始0号位置空,其它的位置i上有编号为i的盒子.Lostm ...
- P3207 [HNOI2010]物品调度
传送门 完了题目看错了--还以为所有的\(x,y\)都要一样--结果题解都没看懂-- 先考虑如果已经求出了所有的\(pos\)要怎么办,那么我们可以把\(0\)也看做是一个箱子,然后最后每个箱子都在一 ...
随机推荐
- 从数据包谈如何封杀P2SP类软件
概述 1.1背景介绍 我们经常在用户的网络中发现大量的P2P应用,占用了网络中大量的宝贵带宽资源,用户的网络管理者也知道内网中存在这些应用,也采取了一些限制措施,但是效果并不一定理想.本文试着以数据包 ...
- How to set China Azure Storage Connection String
Configure Visual Studio to access China Azure Storage Open Visual Studio 2012, Server Explorer Add n ...
- nodejs中的Crypto模块
我是属于实用型的选手,千万别问我过多原理性的东西,我只知道,这个是最好的,我就用它. http://cnodejs.org/topic/504061d7fef591855112bab5
- HTML5——将图片拖拽上传
如下图所示: 代码如下: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...
- mysqld参数配置
这个文件超级大, 查了一下, 大概的作用如下 是储存的格式INNODB类型数据状态下,ibdata用来储存文件的数据而库名的文件夹里面的那些表文件只是结构而已 由于mysql4.1默认试innodb, ...
- java操作excel总结---poi
前不久做过Excel的导入导出功能,其主要的难点是java如何操作Excel文档.现在就来介绍一下利用Apache的poi如何操作Excel. 1.准备工作:导入Apache POI的相关jar包,P ...
- zabbix修改密码
在我们刚刚安装好zabbix之后我们的管理用户是 Admin,密码是zabbix 所以我们肯定是要更改密码的,这个方法也适用于我们忘记管理员密码 首先我们登录mysql数据库 这里有一个zabbix库 ...
- Handlebars的使用方法文档整理(Handlebars.js)
Handlebars是一款很高效的模版引擎,提供语意化的模版语句,最大的兼容Mustache模版引擎, 提供最大的Mustache模版引擎兼容, 无需学习新语法即可使用; Handlebars.js和 ...
- 【POJ 2250】Compromise(最长公共子序列LCS)
题目字符串的LCS,输出解我比较不会,dp的时候记录从哪里转移来的,之后要一步一步转移回去把解存起来然后输出. #include<cstdio> #include<cstring&g ...
- USACO 3.3 fence 欧拉回路
题意:求给定图的欧拉回路(每条边只走一次) 若欧拉回路存在,图中只可能有0个or2个奇数度的点. 求解时,若有奇数度的点,则必须从该点开始.否则可以从任一点开始 求解过程:dfs //主程序部分 # ...