[LA4108]SKYLINE

试题描述

The skyline of Singapore as viewed from the Marina Promenade (shown on the left) is one of the iconic scenes of Singapore. Country X would also like to create an iconic skyline, and it has put up a call for proposals. Each submitted proposal is a description of a proposed skyline and one of the metrics that country X will use to evaluate a proposed skyline is the amount of overlap in the proposed sky-line.

As the assistant to the chair of the skyline evaluation committee, you have been tasked with determining the amount of overlap in each proposal. Each proposal is a sequence of buildings, b1,b2,..., bn , where a building is specified by its left and right endpoint and its height. The buildings are specified in back to front order, in other words a building which appears later in the sequence appears in front of a building which appears earlier in the sequence.

The skyline formed by the first k buildings is the union of the rectangles of the first k buildings (see Figure 4). The overlap of a building, bi , is defined as the total horizontal length of the parts of bi , whose height is greater than or equal to the skyline behind it. This is equivalent to the total horizontal length of parts of the skyline behind bi which has a height that is less than or equal to hi , where hi is the height of building bi . You may assume that initially the skyline has height zero everywhere.

输入

The input consists of a line containing the number c of datasets, followed by c datasets, followed by a line containing the number `0'.

The first line of each dataset consists of a single positive integer, n (0 < n < 100000) , which is the number of buildings in the proposal. The following n lines of each dataset each contains a description of a single building. Thei -th line is a description of building bi . Each building bi is described by three positive integers, separated by spaces, namely, li , ri and hi , where li and rj (0 < li < ri100000) represents the left and right end point of the building and hi represents the height of the building.

输出

The output consists of one line for each dataset. The c -th line contains one single integer, representing the amount of overlap in the proposal for dataset c . You may assume that the amount of overlap for each dataset is at most 2000000.

Note: In this test case, the overlap of building b1 , b2 and b3 are 6, 4 and 4 respectively. Figure 4 shows how to compute the overlap of building b3 . The grey area represents the skyline formed by b1 and b2 and the black rectangle represents b3 . As shown in the figure, the length of the skyline covered by b3 is from position 3 to position 5 and from position 11 to position 13, therefore the overlap of b3 is 4.

输入示例


输出示例


数据规模及约定

见“输入

题解

为尊重原题面我就不翻译了。线段树打懒标记,记录一下区间最大最小值,小于最小值直接剪枝,大于等于最大值直接打懒标记并记录答案,否则下传标记接着递归处理。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 100010
int n, q, ans; int maxv[maxn<<2], minv[maxn<<2], setv[maxn<<2];
void build(int L, int R, int o) {
maxv[o] = minv[o] = 0; setv[o] = -1;
if(L == R) return ;
int M = L + R >> 1, lc = o << 1, rc = lc | 1;
build(L, M, lc); build(M+1, R, rc);
return ;
}
void pushdown(int o) {
int lc = o << 1, rc = lc | 1;
if(setv[o] >= 0) {
maxv[o] = minv[o] = setv[o];
setv[lc] = setv[rc] = setv[o];
setv[o] = -1;
}
return ;
}
int ql, qr;
void update(int L, int R, int o, int h) {
pushdown(o);
if(minv[o] > h) return ;
if(ql <= L && R <= qr && maxv[o] <= h) {
maxv[o] = minv[o] = setv[o] = h;
ans += (R - L + 1);
return ;
}
int M = L + R >> 1, lc = o << 1, rc = lc | 1;
if(ql <= M) update(L, M, lc, h);
if(qr > M) update(M+1, R, rc, h);
maxv[o] = max(maxv[lc], maxv[rc]);
minv[o] = min(minv[lc], minv[rc]);
return ;
} int main() {
int T = read();
while(T--) {
q = read(); ans = 0;
n = maxn - 10;
build(1, n, 1);
while(q--) {
ql = read(); qr = read() - 1; int h = read();
update(1, n, 1, h);
}
printf("%d\n", ans);
} return 0;
}

[LA4108]SKYLINE的更多相关文章

  1. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  2. UVALive - 4108 SKYLINE[线段树]

    UVALive - 4108 SKYLINE Time Limit: 3000MS     64bit IO Format: %lld & %llu Submit Status uDebug ...

  3. [LeetCode] The Skyline Problem

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  4. [地图SkyLine二次开发]框架(5)完结篇

    上节讲到,将菜单悬浮到地图上面,而且任何操作都不会让地图把菜单盖住. 这节带大家,具体开发一个简单的功能,来了进一步了解,这个框架. 1.想菜单中添加按钮 -上节定义的mainLayout.js文件里 ...

  5. [地图SkyLine二次开发]框架(2)

    上节讲到,地图加载. 但我们可以发现,当没有页面布局的情况下,<OBJECT>控件,没有占满整个屏幕,这里我们就要用到Extjs的功能了. 这节要讲的是用Extjs为<OBJECT& ...

  6. [地图SkyLine二次开发]框架(1)

    项目介绍: 项目是三维地理信息系统的开发,框架MVC4.0 + EF5.0 + Extjs4.2 + SkyLine + Arcgis,是对SkyLine的二次开发. 项目快结束了,先给大家看一眼效果 ...

  7. Java for LeetCode 218 The Skyline Problem【HARD】

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  8. The Skyline Problem

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  9. 218. The Skyline Problem *HARD* -- 矩形重叠

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

随机推荐

  1. node的实践(项目三)

    渲染前台的方式. <!DOCTYPE html> <html> <head> <meta http-equiv="content-type" ...

  2. DOM(六)事件类型

    对于用户事件类型而言,最常用的是鼠标.键盘.浏览器. 1.鼠标事件: 鼠标的事件都频繁使用,下面例子就测试各种鼠标事件 <script language="javascript&quo ...

  3. 国内公共DNS

    DNS(Domain Name System,域名系统),因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串.通过主机名,最终 ...

  4. 每天一个linux命令(26):du 命令

    Linux du命令也是查看使用空间的,但是与df命令不同的是Linux du命令是对文件和目录磁盘使用的空间的查看,还是和df命令有一些区别的. 1.命令格式: du [选项][文件] 2.命令功能 ...

  5. 每天一个linux命令(21):tar命令

    通过SSH访问服务器,难免会要用到压缩,解压缩,打包,解包等,这时候tar命令就是是必不可少的一个功能强大的工具.linux中最流行的tar是麻雀虽小,五脏俱全,功能强大. tar 命令可以为linu ...

  6. java日期加减

    1.用java.util.Calender来实现 Calendar calendar=Calendar.getInstance();      calendar.setTime(new Date()) ...

  7. codevs2495 水叮当的舞步 IDA*

    我打暴力不对,于是就看看题解,,,,,,IDA*就是限制搜索深度而已,这句话给那些会A*但不知道IDA*是什么玩意的小朋友 看题解请点击这里 上方题解没看懂的看看这:把左上角的一团相同颜色的范围,那个 ...

  8. css中的默认margin

    上班打酱油中,你懂的; body的margin为8px; webkit默认行高18px:height18px; 默认font-size16px p默认margin是16px 0 16px 0; ul和 ...

  9. Html-Css-iframe的使用

    iframe是作为在网页中嵌套网页的标签 <iframe src="homeIndex_init.html" width="100%" height=&q ...

  10. BIEE 创建一个简单的分析(2)

    步骤: 1.如果BIEE安装在本机,直接登录http://localhost:9704/analytics/ 点击右上方导航菜单中的“新建->分析” 2.选择上节创建的RPD文件中的SCOTT主 ...