Wall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 28157   Accepted: 9401

Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall
towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources
to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build
the wall.




Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements. 



The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices
in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to
the castle. 



Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides
of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers
are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了

Source

题意:
            求n个点的凸包的周长和圆的周长的和;
思路:
          了解点的排序,左转判定;
          判断向量p1=(x1,y1)到p2=(x2,y2)是否做左转,只需要判断x1*y2-x2*y1的正负,如果结果为正,则从p1到p2做左转。

1.将各点排序(请参看基础篇),为保证形成圈,把P0在次放在点表的尾部;

2.准备堆栈:建立堆栈S,栈指针设为t,将0、1、2三个点压入堆栈S;

3.对于下一个点i

                只要S[t-1]、S[t]、i不做左转

         就反复退栈;

      将i压入堆栈S

4.堆栈中的点即为所求凸包;

代码:

#include "iostream"   //poj 1113
#include "cstdio"
#include "cmath"
#include "cstring"
#include "iomanip"
#include "algorithm"
using namespace std; const double eps = 1e-8;
const double PI = acos(-1.0); int cmp(double x){ //判断一个实数的正负
if(fabs(x) < eps) return 0;
if(x > 0) return 1;
return -1;
} inline double sqr(double x){ //计算一个数的平方
return x*x;
} struct point{
double x,y;
point(){};
point(double a,double b) : x(a),y(b) {}
friend point operator - (const point &a,const point &b){
return point(a.x - b.x,a.y - b.y);
}
double norm(){
return sqrt(sqr(x) + sqr(y));
}
}; double det(const point &a,const point &b){ //计算两个向量的叉积
return a.x*b.y - a.y*b.x;
} double dist(const point &a,const point &b){ //计算两个点的距离
return (a-b).norm();
} #define N 1005 point start;
point stacks[3*N]; bool cmp_sort(point a,point b) //对点进行极角排序(以左下角的点为参考点)
{
int temp = cmp(det(a-start,b-start));//(叉积判断)
if(temp==1) return true;
else if(temp==-1) return false;
temp = cmp(dist(b,start)-dist(a,start)); //sort排序后只有true和false,牢记!!!
if(temp==1) return true;
return false;
} void Melkman(point *a,int &n) //求n个点的凸包
{
int k; //记录左下点的下标
int i,j;
point temp;
double minf = 100005;
for(i=0; i<n; ++i)
{
if(cmp(a[i].x-minf) == -1)
{
minf = a[i].x;
k = i;
}
else if(cmp(a[i].x-minf) == 0)
{
if(cmp(a[k].y-a[i].y) == 1)
k = i;
}
}
{ //交换点
temp = a[0];
a[0] = a[k];
a[k] = temp;
}
start = a[0];
sort(a+1,a+n,cmp_sort); //排序!
for(i=0; i<N; ++i)
stacks[i].x = stacks[i].y = 0;
stacks[0] = a[0];
stacks[1] = a[1];
int top=1;
i = 2;
while(i<n)
{
if(top==0 || cmp(det(stacks[top-1]-stacks[top],stacks[top]-a[i]))>=0)
{
top++;
stacks[top] = a[i];
i++;
}
else
top--;
}
for(n=0; n<=top; ++n)
a[n] = stacks[n];
} int main()
{
int i,j;
int n,r;
point a[N];
while(scanf("%d %d",&n,&r)!=-1)
{
for(i=0; i<n; ++i)
scanf("%lf %lf",&a[i].x,&a[i].y);
Melkman(a,n);
double ans = 2*PI*r;
a[n] = a[0]; //将n个点连成一个圈
for(i=0; i<n; ++i)
ans += dist(a[i],a[i+1]);
printf("%.0lf\n",ans);
}
return 0;
}

计算几何--求凸包模板--Graham算法--poj 1113的更多相关文章

  1. 凸包模板——Graham扫描法

    凸包模板--Graham扫描法 First 标签: 数学方法--计算几何 题目:洛谷P2742[模板]二维凸包/[USACO5.1]圈奶牛Fencing the Cows yyb的讲解:https:/ ...

  2. 计算几何(凸包模板):HDU 1392 Surround the Trees

    There are a lot of trees in an area. A peasant wants to buy a rope to surround all these trees. So a ...

  3. POJ-3348 Cows 计算几何 求凸包 求多边形面积

    题目链接:https://cn.vjudge.net/problem/POJ-3348 题意 啊模版题啊 求凸包的面积,除50即可 思路 求凸包的面积,除50即可 提交过程 AC 代码 #includ ...

  4. Graham求凸包模板

    struct P { double x, y; P(, ):x(x), y(y) {} double add(double a, double b){ ; return a+b; } P operat ...

  5. POJ-1113 Wall 计算几何 求凸包

    题目链接:https://cn.vjudge.net/problem/POJ-1113 题意 给一些点,求一个能够包围所有点且每个点到边界的距离不下于L的周长最小图形的周长 思路 求得凸包的周长,再加 ...

  6. poj1113Wall 求凸包周长 Graham扫描法

    #include<iostream> #include<algorithm> #include<cmath> using namespace std; typede ...

  7. POJ 1113 凸包模板题

    上模板. #include <cstdio> #include <cstring> #include <iostream> #include <algorit ...

  8. HDU 4667 Building Fence(2013多校7 1002题 计算几何,凸包,圆和三角形)

    Building Fence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)To ...

  9. Wall - POJ 1113(求凸包)

    题目大意:给N个点,然后要修建一个围墙把所有的点都包裹起来,但是要求围墙距离所有的点的最小距离是L,求出来围墙的长度. 分析:如果没有最小距离这个条件那么很容易看出来是一个凸包,然后在加上一个最小距离 ...

随机推荐

  1. WebApi 登录身份验证

    前言:Web 用户的身份验证,及页面操作权限验证是B/S系统的基础功能,一个功能复杂的业务应用系统,通过角色授权来控制用户访问,本文通过Form认证,Mvc的Controller基类及Action的权 ...

  2. ADO.NET完整增删改

    完整增添 删除 修改 运用中间变量运用.bool has=false 1增加 需要使用cmd.Parameters这个集合 占位符: @key 代表这个位置用这个占位符占住了 SqlConnectio ...

  3. MVVM(Model-View-View-Model)简单分析(及代码示例)

    项目组,现在用的MVVM(Model-View-View-Model)模式,搞了一个多月,感觉有点明白了.

  4. 重新想象 Windows 8.1 Store Apps (89) - 通信的新特性: 下载数据, 上传数据, 上传文件

    [源码下载] 重新想象 Windows 8.1 Store Apps (89) - 通信的新特性: 下载数据, 上传数据, 上传文件 作者:webabcd 介绍重新想象 Windows 8.1 Sto ...

  5. win7局域网里输入正确密码也访问不了其他的机器

    1.本地安全策略-本地策略-安全选项-网络安全:LAN管理器身份验证级别,默认是“没有定义”,更改为“发送LM和NTLM响应! Windows 7系统自带的是一个统安全管理工具--本地安全策略,它可以 ...

  6. windows下react-native环境搭建

    首先不得不先吐槽一下自己,一个坑总是踩很多次,且乐此不疲. 咋办? 写博客记录记录呗. 零.记录的点 Java环境的下载与配置 Android环境的下载与配置 Node环境的下载与配置 创建第一个re ...

  7. JAVA多用户商城系统源码

    最近公司要搞商城,让我多方咨询,最后看了很多,要不就是代码注释不全,要不就是bug多,要么就是文档缺少,最后决定自己开发一套商城. 下面是开发的一些心得体会,权且记录下来,给自己做个记录把.   网址 ...

  8. 【iOS】Quartz2D图片剪切

    一.使用Quartz2D完成图片剪切1.把图片显示在自定义的view中 先把图片绘制到view上.按照原始大小,把图片绘制到一个点上. 代码: - (void)drawRect:(CGRect)rec ...

  9. wap网站safari浏览器和微信cooke不能登录问题

    wap网站safari浏览器cooke不能登录问题: http://wenku.baidu.com/link?url=VnPxl43PySYVygt09vkQ7xwxOD0JCXNtw3Fx7100j ...

  10. HTML5原生拖放实例分析

    HTML5提供了原生拖放功能的JavaScript API,使用起来很方便. 兼容性: 对于PC端浏览器,Firefox.Chrome.Safari支持良好,而IE和Edge浏览器有些特性不支持,如I ...