前言  

  之前对kmp算法虽然了解它的原理,即求出P0···Pi的最大相同前后缀长度k。

  但是问题在于如何求出这个最大前后缀长度呢?

  我觉得网上很多帖子都说的不是很清楚,总感觉没有把那层纸戳破,

  后来翻看算法导论32章 字符串匹配,虽然讲到了对前后缀计算的正确性,但是大量的推理证明不大好理解,没有与程序结合起来讲。

  今天我在这里讲一讲我的一些理解,希望大家多多指教,如果有不清楚的或错误的请给我留言。

1.kmp算法的原理:

  部分内容转自:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html

字符串匹配是计算机的基本任务之一。

举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.

因为B与A不匹配,搜索词再往后移。

3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

接着比较字符串和搜索词的下一个字符,还是相同。

5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.

因为空格与A不匹配,继续后移一位。

12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

14.

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

2.next数组的求解思路

  通过上文完全可以对kmp算法的原理有个清晰的了解,那么下一步就是编程实现了,其中最重要的就是如何根据待匹配的模版字符串求出对应每一位的最大相同前后缀的长度。

; ;) ]; //之所以-1是因为s串的下标是从0开始而不是从1开始
           if(s[i]==s[k]) ++k;
           Next[i]=k;
     }
}

  现在我着重讲解一下while循环所做的工作:

  •   已知前一步计算时最大相同的前后缀长度为k(k>0),即P[0]···P[k-1];(k-1的原因)
  •   此时比较第k项P[k]与P[q],如图1所示
  •   如果P[K]等于P[q],那么很简单跳出while循环;
  • 关键!如果不等呢???
    • 那么我们应该利用已经得到的next[0]···next[k-1]来求P[0]···P[k-1]这个子串中最大相同前后缀,可能有同学要问了——为什么要求P[0]···P[k-1]的最大相同前后缀呢???是啊!为什么呢? 原因在于P[k]已经和P[q]失配了,而且P[q-k] ··· P[q-1]又与P[0] ···P[k-1]相同,看来P[0]···P[k-1]这么长的子串是用不了了,那么我要找个同样也是P[0]打头、P[k-1]结尾的子串即P[0]···P[j-1](j==next[k-1]),看看它的下一项P[j]是否能和P[q]匹配。如图2所示

;
     ;)
                 ;
     ;)
                 );
     ;
}
/*

*/

其实我们可以发现KMP算法的精华部分是一个DP,每次右滑时,都是根据前面状态得到的有用信息进行的。相当于记忆化更新。这样算法才具有了很高的效率。

3.kmp的优化

KMP算法的原理就是利用相匹配的前缀子串与后缀子串,来确定失配时下次对齐的位置;

其中最关键的就是next数组的确立;

数据结构课本上KMP算法next数组计算经典的例子:

;
      || pStr[i] == pStr[k])
           {
                 nextArr[++i] = ++k;
           }
           else k = nextArr[k];
     }
}

而这个KMP算法next数组计算只关注了前k-1个字符中,前后匹配的子串,没有利用到当前失配的字符;

比如:ABACA,当第2个A失配时,说明被匹配串的当前位置的字符必定不等于A,所以将第0位对齐到此位也必定失配,所以应该继续回溯到第0位失配时所需要对齐的位,这里也就是-1;

这个"必定不等于(!=)"是可以被利用的!我们对KMP算法next数组计算的优化正是基于此;

下面是优化后的KMP算法next数组计算与注释:

;
      && pStr[j] != pStr[j_next]) j_next = nextArr[j_next];
           }
           //这里就是优化点
           //因为(自增++之后)pStr[j]与pStr[j_next]相等
           //所以pStr[j]失配后,pStr[j_next]也必定失配
           //故丢弃pStr[j_next],再取pStr[j_next]失配时的对齐位pStr[nextArr[j_next]]
           //也即nextArr[j] = nextArr[j_next];
           else nextArr[j] = nextArr[j_next];
     }
}

给个无注释纯净版的:

;
      && pStr[j] != pStr[j_next]) j_next = nextArr[j_next];
           }
           else nextArr[j] = nextArr[j_next];
     }
}

KMP算法详解 --- 彻头彻尾理解KMP算法的更多相关文章

  1. 编辑距离算法详解:Levenshtein Distance算法

    算法基本原理:假设我们可以使用d[ i , j ]个步骤(可以使用一个二维数组保存这个值),表示将串s[ 1…i ] 转换为 串t [ 1…j ]所需要的最少步骤个数,那么,在最基本的情况下,即在i等 ...

  2. 第三十节,目标检测算法之Fast R-CNN算法详解

    Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2 ...

  3. A*算法详解链接

    A星算法详解(个人认为最详细,最通俗易懂的一个版本) Introduction to the A* Algorithm 路径规划: a star, A星算法详解 实现A星算法

  4. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  5. [转] KMP算法详解

    转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的K ...

  6. KMP算法详解(转自中学生OI写的。。ORZ!)

    KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...

  7. 算法进阶面试题01——KMP算法详解、输出含两次原子串的最短串、判断T1是否包含T2子树、Manacher算法详解、使字符串成为最短回文串

    1.KMP算法详解与应用 子序列:可以连续可以不连续. 子数组/串:要连续 暴力方法:逐个位置比对. KMP:让前面的,指导后面. 概念建设: d的最长前缀与最长后缀的匹配长度为3.(前缀不能到最后一 ...

  8. 数据结构4.3_字符串模式匹配——KMP算法详解

    next数组表示字符串前后缀匹配的最大长度.是KMP算法的精髓所在.可以起到决定模式字符串右移多少长度以达到跳跃式匹配的高效模式. 以下是对next数组的解释: 如何求next数组: 相关链接:按顺序 ...

  9. KMP算法详解&&P3375 【模板】KMP字符串匹配题解

    KMP算法详解: KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt(雾)提出的. 对于字符串匹配问题(such as 问你在abababb中有多少个 ...

随机推荐

  1. Opengl的gl_NormalMatrix【转】

    原文地址:http://blog.csdn.net/ichild1964/article/details/9728357 参考:http://www.gamedev.net/topic/598985- ...

  2. Python一点注意

    1. pickle pickle模块中的两个主要函数是dump()和load().dump()函数接受一个文件句柄和一个数据对象作为参数,把数据对象以特定的格式保存到给定的文件中.当我们使用load( ...

  3. Windows调试学习笔记:(二)WinDBG调试.NET程序示例

    好不容易把环境打好了,一定要试试牛刀.我创建了一个极其简单的程序(如下).让我们期待会有好的结果吧,阿门! using System; using System.Collections.Generic ...

  4. Linux下配置ip地址四种方法

    linux系统安装完,以后通过命令模式配置网卡IP.配置文件通常是/etc/sysconfig/network-scripts/ifcfg-interface-nameifconfig后显示的内容,l ...

  5. Hadoop - 任务调度系统比较

    1.概述 在Hadoop应用,随着业务指标的迭代,而使其日趋复杂化的时候,管理Hadoop的相关应用会变成一件头疼的事情,如:作业的依赖调度,任务的运行情况的监控,异常问题的排查等,这些问题会是的我们 ...

  6. window_x64微信小程序环境搭建

    所需文件地址如下: http://pan.baidu.com/s/1nv0IHhn(ylk7)   1.下载微信开发工具0.7.0_x64 安装完成后,打开程序,进行微信扫码登录 2.下载微信开发工具 ...

  7. mvc 分页视图 js 失效

    MVC的分页视图确实是好东西,比ajax直观,可是联动后 之前绑定的js事件失效,所以我们在绑定的时候,要注意使用jquery的 动态绑定功能 最常见的用法应该是 select 的 change 事件 ...

  8. Invalid Image Path - No image found at the path referenced under key "CFBundleIconFile": Icon.png

    I got the same error when uploading my app. Moving all icon files to the Asset Catalog works if your ...

  9. Oracle数据库入门——初级系列教程

  10. C#获取内网和外网IP

    写了个小客户端,里面用到了获取内网和外网的IP地址,代码如下: // InnerIP var ipHost = Dns.Resolve(Dns.GetHostName()); ]; innerIP = ...