关于求解不定方程的n(n-1)=2m(m-1)的解法的总结
主要参考下面两篇论文
原有题目意思是
记得有一次全班去唱K, 其中有个活动是情歌对唱. 具体操作流程是这样的:
准备好 21 个阄(我们班 15 男 6 女), 其中只有两个是有标记的, 每人随意抓取一个, 最后取到有标记的阄的两个人去点首情歌对唱.
旁边一哥们儿幽幽地对我说, 看来搅基真是神的安排啊, 你看我们班的男女人数, 搅基的几率 C(15,2)/C(21,2) 刚好是 1/2.
给跪了, 这哥们儿对数字太敏感了, 简直是拉马努金转世啊. 不过我随之想到一个问题: (21, 15) 真的是神的唯一安排吗? 其实不是的,
神还有很多类似的安排. 比如 (4, 3), 显然 C(4,2)/C(3,2) 也等于 1/2, 当然还有 (120, 85) 等等等等.
神的安排太多太多了, 如果我们定义 (n, m) 是一个安排(其中 1 < m < n), 而如果 C(m,2)/C(n,2) = 1/2, 它就是神的安排.
现在的问题是, 给你一个不大于 10^9 的正整数 N, 有多少组神的安排 (n, m) 满足 n <= N 呢?
解题思路:
对C(m,2)/C(n,2) = 1/2 进行化简得到的为n(n-1) = 2m(m-1),求出n<=N的整数解的个数。
将方程两边同时乘以4得到:4n(n-1) = 8m(m-1),将其配方得到:(2n-1)2 =2(2m-1)2-1,令X=2n-1,Y=2m-1
则得到方程:X2-2Y2=-1 满足佩尔方程:x2-Dy2=Q,根据上面两篇论文,可以知道不定方程的解为
X+Y√2 = ±(1+√2)2n+1,n = 0,±1,±2,±3,………
方程X2-2Y2=-1 满足x > 1,y>1的整数解可以用递推公式表示即
x1=7,y1=5,
xk+1=2xk+4yk, 其中k=1,2,3............
yk+1=2xk+3yk
注意最后要去掉(1,1)及所有的偶数解(因为X=2n-1,Y=2m-1,X,Y必须是奇数)
python版的源代码为:
N=100
cnt = 0
x,y=1,1
while x<= 2*N-1:
x,y=3*x+4*y,2*x+3*y
if x > 2*N-1:
break
if x%2 and y%2:
cnt +=1
print cnt
关于求解不定方程的n(n-1)=2m(m-1)的解法的总结的更多相关文章
- POJ - 2142 The Balance(扩展欧几里得求解不定方程)
d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...
- 【lydsy1407】拓展欧几里得求解不定方程+同余方程
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1407 题意: 有n个野人,野人各自住在第c[i]个山洞中(山洞成环状),每年向前走p[i] ...
- 扩展欧几里得(exgcd)-求解不定方程/求逆元
贝祖定理:即如果a.b是整数,那么一定存在整数x.y使得ax+by=gcd(a,b).换句话说,如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍.(可以来判断一个这样的式子有没有解)有一个 ...
- HDU 2669 Romantic 扩展欧几里德---->解不定方程
Romantic Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 【数论】不定方程&逆元&中国剩余定理
一.不定方程 要求逆元,首先要知道什么是不定方程. 已知a,b,c,求解x,y,形如ax + by = c 的方程就是不定方程. 不定方程有两种解的情况: 1.无解 2.存在且有无限的解 那么,如何判 ...
- 一人一python挑战题解
题目id: 1 just print a+b give you two var a and b, print the value of a+b, just do it!! print a+b 题目id ...
- [转]100个经典C语言程序(益智类问题)
目录: 1.绘制余弦曲线 2.绘制余弦曲线和直线 3.绘制圆 4.歌星大奖赛 5.求最大数 6.高次方数的尾数 8.借书方案知多少 9.杨辉三角形 10.数制转换 11.打鱼还是晒网 12.抓交通肇事 ...
- 【算法】C语言趣味程序设计编程百例精解
C语言趣味程序设计编程百例精解 C/C++语言经典.实用.趣味程序设计编程百例精解(1) https://wenku.baidu.com/view/b9f683c08bd63186bcebbc3c. ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
随机推荐
- php自定义函数call_user_func和call_user_func_array详解
看UCenter的时候有一个函数call_user_func,百思不得其解,因为我以为是自己定义的函数,结果到处都找不到,后来百度了一下才知道call_user_func是内置函 call_user_ ...
- .NET Reflector 7.6.1.824 Edition .NET程序反编译神器(附插件安装教程2012-10-13更新) 完全破解+使用教程
原文来自VAllen cnblogs 一.使用教程1.解压后,双击Reflector.exe,如果有选择默认版本的.Net Framework,根据需要选择即可.你选择的版本不同则出现的默认程序集也不 ...
- Dynamic Web Module 3.0 requires Java 1.6 or newer
在maven工程的pom.xml文件中加入如下代码: 在<build>里面加入如下代码: <plugins> <plugin> <groupId>org ...
- swift init继承问题
当在子类的 designated init方法中不手动调用 父类的 designated init方法时,如果父类有不接受任何参数的init,那么系统会自动调用它,编译器不会报错.但是如果父类中没有不 ...
- FastReport for delphi xe 安装步骤
FastReport for delphi xe 安装步骤 1.先关闭DELPHI:2.下载后解压到一个目录,比如:D:FR:3.打开D:FR,运行recompile.exe ->点击" ...
- eclipse连接虚拟机
1.启动eclipse 2.打开 "Help/Install New Software..." 3.打开Add…… 4.输入Name: Genymobile Lo ...
- [火狐REST] 火狐REST 模拟 HTTP get, post请求
- 好玩儿的expect
前言 1> 借鉴里面的应用思想,使用断言提高代码的健壮性及维护性 2> 实现方式——不采用直接嵌入expect的方式,统一进行重写(提取常用断言方法,重新构造API) 官网介绍 https ...
- 在竞赛ACM Java处理输入输出
一.Java之ACM注意点 1. 类名称必须采用public class Main方式命名 2. 在有些OJ系统上,即便是输出的末尾多了一个“ ”,程序可能会输出错误,所以在我看来好多OJ系统做的是非 ...
- php编译报错 configure: error: Please reinstall the libcurl distribution - easy.h should be in <curl-dir>/include/curl/
➜ php- yum install -y curl-devel