设$f[i]$表示长度为$i$的不下降子序列的个数。

考虑容斥,对于长度为$i$的子序列,如果操作不合法,那么之前一定是一个长度为$i+1$的子序列,所以答案$=\sum_{i=1}^n(f[i]\times (n-i)!-f[i+1]\times (n-i-1)!\times (i+1))$。

时间复杂度$O(n^2\log n)$。

#include<cstdio>
#include<algorithm>
const int N=2010,P=1000000007;
int n,i,j,x,a[N],b[N],bit[N][N],f[N],fac[N],ans;
inline void up(int&x,int y){x+=y;if(x>=P)x-=P;}
inline int lower(int x){
int l=1,r=n,mid,t;
while(l<=r)if(b[mid=(l+r)>>1]<=x)l=(t=mid)+1;else r=mid-1;
return t;
}
inline void add(int p,int x,int y){for(;x<=n;x+=x&-x)up(bit[p][x],y);}
inline int ask(int p,int x){int t=0;for(;x;x-=x&-x)up(t,bit[p][x]);return t;}
int main(){
for(scanf("%d",&n),i=fac[0]=1;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i],fac[i]=1LL*fac[i-1]*i%P;
std::sort(b+1,b+n+1),add(0,1,1);
for(i=1;i<=n;i++)for(a[i]=lower(a[i]),j=i;j;j--)up(f[j],x=ask(j-1,a[i])),add(j,a[i],x);
for(i=1;i<=n;i++){
up(ans,1LL*f[i]*fac[n-i]%P);
if(i<n)up(ans,P-1LL*f[i+1]*fac[n-i-1]%P*(i+1)%P);
}
return printf("%d",ans),0;
}

  

BZOJ4361 : isn的更多相关文章

  1. 【BZOJ4361】isn 动态规划+树状数组+容斥

    [BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...

  2. 【BZOJ4361】isn(动态规划,容斥)

    [BZOJ4361]isn(动态规划,容斥) 题面 BZOJ 题解 首先我们如果确定了一个不降序列,假设它的长度为\(i\), 那么可行的方案数为\(i*(n-i)!\),但是这样有一些非法的情况,即 ...

  3. BZOJ4361 isn 【树状数组优化DP】*

    BZOJ4361 isn Description 给出一个长度为n的序列A(A1,A2-AN).如果序列A不是非降的,你必须从中删去一个数,这一操作,直到A非降为止.求有多少种不同的操作方案,答案模1 ...

  4. BZOJ4361 isn(动态规划+树状数组+容斥原理)

    首先dp出长度为i的不下降子序列个数,显然这可以树状数组做到O(n2logn). 考虑最后剩下的序列是什么,如果不管是否合法只是将序列删至只剩i个数,那么方案数显然是f[i]*(n-i)!.如果不合法 ...

  5. 【BZOJ4361】isn

    题目 [BZOJ4361]isn 做法 \(dp_{i,j}\)表示以\(i\)结尾\(j\)长度,树状数组\(tree_{i,j}\)表长度为\(i\),以\(<=j\)结尾的个数,显然\(d ...

  6. BZOJ4361 isn 树状数组、DP、容斥

    传送门 不考虑成为非降序列后停止的限制,那么答案显然是\(\sum\limits_{i=1}^N cnt_i \times (N-i)!\),其中\(cnt_i\)表示长度为\(i\)的非降序列数量 ...

  7. bzoj4361 isn(树状数组优化dp+容斥)

    4361: isn Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 938  Solved: 485[Submit][Status][Discuss] ...

  8. bzoj4361 isn (dp+树状数组+容斥)

    我们先设f[i][j]表示长度为i,以j结尾的不降子序列个数,$f[i][j]=\sum{f[i-1][k]},A[k]<=A[j],k<j$,用树状数组优化一下可以$O(n^2logn) ...

  9. bzoj4361:isn(dp+容斥+树状数组)

    题面 darkbzoj 题解 \(g[i]\)表示长度为\(i\)的非降序列的个数 那么, \[ ans = \sum_{i=1}^{n}g[i]*(n-i)!-g[i+1]*(n-i-1)!*(i+ ...

随机推荐

  1. c++中的srand()和rand() 转载 自:http://blog.sina.com.cn/s/blog_624c2c4001012f67.html

    今天看了同事写的小程序,发现了其中出现了srand()和rand()这两个我以前没有用过的函数,当然从名字可以看出肯定能随机数有关,于是网查资料知这两个函数配合一起使用来产生随机数的,哈哈,又长知识了 ...

  2. ubuntu 快速安装jre

    sudo add-apt-repository ppa:webupd8team/java sudo apt-get update sudo apt-get install oracle-java7-i ...

  3. 使用Cydia Substrate 从Native Hook Android Java世界

    这里介绍了如何使用Cydia Substrate Hook安卓Java世界.这篇文章介绍如何从Native中Hook 安卓Java世界. 手机端配置见之前文章. 一.建立工程 建立一个Android工 ...

  4. php中global与$GLOBALS的用法及区别

    php中global 与 $GLOBALS[""] 差别 原本觉得global和$GLOBALS除了写法不一样觉得,其他都一样,可是在实际利用中发现2者的差别还是很大的! 先看下面 ...

  5. Merge Two Sorted Arrays

    Merge two given sorted integer array A and B into a new sorted integer array. Example A=[1,2,3,4] B= ...

  6. Java for LeetCode 043 Multiply Strings

    Given two numbers represented as strings, return multiplication of the numbers as a string. Note: Th ...

  7. 9.Python笔记之面向对象高级部分

    类的成员 类的成员可以分为三大类:字段.方法和属性 注:所有成员中,只有普通字段的内容保存对象中,即:根据此类创建了多少对象,在内存中就有多少个普通字段.而其他的成员,则都是保存在类中,即:无论对象的 ...

  8. 借助magicwindow sdk plugin快速集成sdk

    到目前为止,Android Studio已经是开发原生Android App的主流IDE,它是由Google官方设计并基于JetBrains的IntelliJ IDEA.我们魔窗开发的sdk也是使用此 ...

  9. 解决 Eclipse “alt+/”快捷键 无效

    解决方案: 1. 检查windows ——preferences ——java ——editor —— content assist - advanced,在右上方有一行“select the pro ...

  10. Man简单介绍

    转自:http://os.51cto.com/art/201312/425525.htm Linux系统提供了相对比较丰富的帮助手册(man),man是manual的缩写,在日常linux系统管理中经 ...