HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)
Time Limit: 1000MS | Memory Limit: 32768KB | 64bit IO Format: %I64d & %I64u |
Description
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、 这是一个二人游戏;
2、 一共有3堆石子,数量分别是m, n, p个;
3、 两人轮流走;
4、 每走一步可以选择任意一堆石子,然后取走f个;
5、 f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、 最先取光所有石子的人为胜者;
假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。
Input
m=n=p=0则表示输入结束。
Output
Sample Input
1 4 1
0 0 0
Sample Output
Nacci
#include <iostream>
#include <string.h>
#include <stdio.h> using namespace std;
const int N = ;
const int M = ; int fib[];
int SG[N]; int mex(int x)
{
bool vis[M];
memset(vis,,sizeof(vis));
for(int i=;i<M;i++)
{
int t = x - fib[i];
if(t < ) break;
if(SG[t] == -)
SG[t] = mex(t);
vis[SG[t]] = ;
}
for(int i=;;i++)
if(!vis[i]) return i;
} void Init()
{
fib[] = ;
fib[] = ;
for(int i=;i<M;i++)
fib[i] = fib[i-] + fib[i-];
memset(SG,-,sizeof(SG));
for(int i=;i<N;i++)
SG[i] = mex(i);
} int main()
{
Init();
int a,b,c;
while(~scanf("%d%d%d",&a,&b,&c))
{
if(a == && b == && c == ) break;
int ans = ;
ans ^= SG[a];
ans ^= SG[b];
ans ^= SG[c];
if(ans) puts("Fibo");
else puts("Nacci");
}
return ;
}
非深搜:
#include <iostream>
#include <string.h>
#include <stdio.h> using namespace std;
const int N = ;
const int M = ;
int fib[];
int SG[N];
void get()
{
bool vis[M];
for(int i=;i<N;i++) //sg数组
{
memset(vis,,sizeof(vis));
for(int j=;j<M&&fib[j]<=i;j++) //要用的s数组 注意这里有等号
{
vis[SG[i-fib[j]]]=;
}
for(int x=;x<N;x++)
if(!vis[x])
{
SG[i]=x;
break;
}
} }
void Init()
{
fib[] = ;
fib[] = ;
for(int i=;i<M;i++)
fib[i] = fib[i-] + fib[i-];
memset(SG,,sizeof(SG)); //这里定义成 -1和0都可以
get();
} int main()
{
Init();
int a,b,c;
while(~scanf("%d%d%d",&a,&b,&c))
{
if(a == && b == && c == ) break;
int ans = ;
ans ^= SG[a];
ans ^= SG[b];
ans ^= SG[c];
if(ans) puts("Fibo");
else puts("Nacci");
}
return ;
}
HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)的更多相关文章
- HDU 2516 取石子游戏(斐波那契博弈)
取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...
- HDU.2516 取石子游戏 (博弈论 斐波那契博弈)
HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...
- hdu 2516 取石子游戏 (斐波那契博弈)
题意:1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍. 取完者胜,先取者负输出"Second win",先取者胜 ...
- 题解报告:hdu 2516 取石子游戏(斐波那契博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个, ...
- {HDU}{2516}{取石子游戏}{斐波那契博弈}
题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐 ...
- HDU 2516 取石子游戏 斐波纳契博弈
斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍) ...
- 博弈论基础知识: 巴什博奕+斐波那契博弈+威佐夫博奕+尼姆博弈(及Staircase)(转)
(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.若(m+1) | n,则先手必败,否则先手必胜.显然,如果n=m+1 ...
- 51Nod 1070 Bash游戏 V4(斐波那契博弈)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070 题意: 思路: 这个是斐波那契博弈,http://blog.csd ...
- hdu2516斐波那契博弈
刚开始想用sg函数做,想了半天没一点思路啊. 原来这是一个新题型,斐波那契博弈 斐波那契博弈模型:有一堆个数为 n 的石子,游戏双方轮流取石子,满足:1. 先手不能在第一次把所有的石子取完:2. 之后 ...
随机推荐
- SpringMVC中Controller和RestController
项目中的@Controller下有的是返回String类型的(比如getAllBook),有的是void的,当然,String类型是转发的页面,在void中用的是pringwrite,我今天想做一件事 ...
- codeforces 720A:Closing ceremony
Description The closing ceremony of Squanch Code Cup is held in the big hall with n × m seats, arran ...
- BZOJ1083 繁忙的都市
Description 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口 ...
- 初次使用erlang的concurrent
如果不是它骇人听闻的并行性能,几乎不会考虑去学习这么一门语言.因为它的并行,我看到的是一块用软件写出来的电路板,是的,它几乎就是把电脑变成了一个可以自由编写逻辑的芯片. 例程来自这里:http://w ...
- C#获得系统打开的端口和状态
实际是通过c#编程方式调用了CMD命令行,然后调用netstat命令,然后将CMD命令的输出流转到了C#控制台程序上.也可以将结果输出到文件. using System; using System.C ...
- something about english
Molten lava from a volcano will solidify as it cools. The shuttle bus makes my commute to work conve ...
- memcached安装和php-memcached扩展安装.update.2014-08-15
服务器端主要是安装memcache服务器端,目前的最新版本是 memcached-1.3.0 .下载官网:http://www.danga.com另外,Memcache用到了libevent这个库用于 ...
- sql 树 递归
sql 树 递归 with SubQuery(No,Name,ParentNo) as ( ' union all select A.No,A.Name,A.ParentNo from [Port_D ...
- mysql大表如何优化
作者:哈哈链接:http://www.zhihu.com/question/19719997/answer/81930332来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处 ...
- 面向对象分析设计-------02UML+UML各种图形及作用
一.UML是什么?UML有什么用? 二.UML的历史 三.UML的上层结构(Superstructure) 四.UML建模工具 五.UML的图(重点) 1.用例图(use case diagram) ...