Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u

Submit Status

Description

任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: 
F(1)=1; 
F(2)=2; 
F(n)=F(n-1)+F(n-2)(n>=3); 
所以,1,2,3,5,8,13……就是菲波那契数列。 
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。 
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下: 
1、  这是一个二人游戏; 
2、  一共有3堆石子,数量分别是m, n, p个; 
3、  两人轮流走; 
4、  每走一步可以选择任意一堆石子,然后取走f个; 
5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量); 
6、  最先取光所有石子的人为胜者;

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。

 

Input

输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。 
m=n=p=0则表示输入结束。 
 

Output

如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。 
 

Sample Input

1 1 1
1 4 1
0 0 0
 

Sample Output

Fibo
Nacci
题意如题。
题解:求sg值即可,因为i的后继都是小于i的,即i的后继的sg值已知,所以可以不搜索,给出两种AC代码。
利用dfs求sg函数:
#include <iostream>
#include <string.h>
#include <stdio.h> using namespace std;
const int N = ;
const int M = ; int fib[];
int SG[N]; int mex(int x)
{
bool vis[M];
memset(vis,,sizeof(vis));
for(int i=;i<M;i++)
{
int t = x - fib[i];
if(t < ) break;
if(SG[t] == -)
SG[t] = mex(t);
vis[SG[t]] = ;
}
for(int i=;;i++)
if(!vis[i]) return i;
} void Init()
{
fib[] = ;
fib[] = ;
for(int i=;i<M;i++)
fib[i] = fib[i-] + fib[i-];
memset(SG,-,sizeof(SG));
for(int i=;i<N;i++)
SG[i] = mex(i);
} int main()
{
Init();
int a,b,c;
while(~scanf("%d%d%d",&a,&b,&c))
{
if(a == && b == && c == ) break;
int ans = ;
ans ^= SG[a];
ans ^= SG[b];
ans ^= SG[c];
if(ans) puts("Fibo");
else puts("Nacci");
}
return ;
}

非深搜:

#include <iostream>
#include <string.h>
#include <stdio.h> using namespace std;
const int N = ;
const int M = ;
int fib[];
int SG[N];
void get()
{
bool vis[M];
for(int i=;i<N;i++) //sg数组
{
memset(vis,,sizeof(vis));
for(int j=;j<M&&fib[j]<=i;j++) //要用的s数组 注意这里有等号
{
vis[SG[i-fib[j]]]=;
}
for(int x=;x<N;x++)
if(!vis[x])
{
SG[i]=x;
break;
}
} }
void Init()
{
fib[] = ;
fib[] = ;
for(int i=;i<M;i++)
fib[i] = fib[i-] + fib[i-];
memset(SG,,sizeof(SG)); //这里定义成 -1和0都可以
get();
} int main()
{
Init();
int a,b,c;
while(~scanf("%d%d%d",&a,&b,&c))
{
if(a == && b == && c == ) break;
int ans = ;
ans ^= SG[a];
ans ^= SG[b];
ans ^= SG[c];
if(ans) puts("Fibo");
else puts("Nacci");
}
return ;
}

HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)的更多相关文章

  1. HDU 2516 取石子游戏(斐波那契博弈)

    取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...

  2. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

  3. hdu 2516 取石子游戏 (斐波那契博弈)

    题意:1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍. 取完者胜,先取者负输出"Second win",先取者胜 ...

  4. 题解报告:hdu 2516 取石子游戏(斐波那契博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个, ...

  5. {HDU}{2516}{取石子游戏}{斐波那契博弈}

    题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐 ...

  6. HDU 2516 取石子游戏 斐波纳契博弈

    斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍) ...

  7. 博弈论基础知识: 巴什博奕+斐波那契博弈+威佐夫博奕+尼姆博弈(及Staircase)(转)

    (一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.若(m+1) | n,则先手必败,否则先手必胜.显然,如果n=m+1 ...

  8. 51Nod 1070 Bash游戏 V4(斐波那契博弈)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070 题意: 思路: 这个是斐波那契博弈,http://blog.csd ...

  9. hdu2516斐波那契博弈

    刚开始想用sg函数做,想了半天没一点思路啊. 原来这是一个新题型,斐波那契博弈 斐波那契博弈模型:有一堆个数为 n 的石子,游戏双方轮流取石子,满足:1. 先手不能在第一次把所有的石子取完:2. 之后 ...

随机推荐

  1. SpringMVC中Controller和RestController

    项目中的@Controller下有的是返回String类型的(比如getAllBook),有的是void的,当然,String类型是转发的页面,在void中用的是pringwrite,我今天想做一件事 ...

  2. codeforces 720A:Closing ceremony

    Description The closing ceremony of Squanch Code Cup is held in the big hall with n × m seats, arran ...

  3. BZOJ1083 繁忙的都市

    Description 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口 ...

  4. 初次使用erlang的concurrent

    如果不是它骇人听闻的并行性能,几乎不会考虑去学习这么一门语言.因为它的并行,我看到的是一块用软件写出来的电路板,是的,它几乎就是把电脑变成了一个可以自由编写逻辑的芯片. 例程来自这里:http://w ...

  5. C#获得系统打开的端口和状态

    实际是通过c#编程方式调用了CMD命令行,然后调用netstat命令,然后将CMD命令的输出流转到了C#控制台程序上.也可以将结果输出到文件. using System; using System.C ...

  6. something about english

    Molten lava from a volcano will solidify as it cools. The shuttle bus makes my commute to work conve ...

  7. memcached安装和php-memcached扩展安装.update.2014-08-15

    服务器端主要是安装memcache服务器端,目前的最新版本是 memcached-1.3.0 .下载官网:http://www.danga.com另外,Memcache用到了libevent这个库用于 ...

  8. sql 树 递归

    sql 树 递归 with SubQuery(No,Name,ParentNo) as ( ' union all select A.No,A.Name,A.ParentNo from [Port_D ...

  9. mysql大表如何优化

    作者:哈哈链接:http://www.zhihu.com/question/19719997/answer/81930332来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处 ...

  10. 面向对象分析设计-------02UML+UML各种图形及作用

    一.UML是什么?UML有什么用? 二.UML的历史 三.UML的上层结构(Superstructure) 四.UML建模工具 五.UML的图(重点) 1.用例图(use case diagram) ...