Problem G. Generators

Input file: generators.in

Output file: generators.out
Little Roman is studying linear congruential generators — one of the oldest and best known pseudorandom number generator algorithms. Linear congruential generator (LCG) starts with a non-negative integer number x0 also known as seed and produces an infinite sequence of non-negative integer numbers xi (0 ≤ xi < c) which are given by the following recurrence relation:
xi+1 = (axi + b) mod c
here a, b, and c are non-negative integer numbers and 0 ≤ x0 < c. Roman is curious about relations between sequences generated by different LCGs. In particular, he has n different LCGs with parameters a(j), b(j), and c(j) for 1 ≤ j ≤ n, where the j-th LCG is generating a sequence x(j) i . He wants to pick one number from each of the sequences generated by each LCG so that the sum of the numbers is the maximum one, but is not divisible by the given integer number k. Formally, Roman wants to find integer numbers tj ≥ 0 for 1 ≤ j ≤ n to maximize s =Pn j=1 x(j) tj subject to constraint that s mod k 6= 0. Input The first line of the input file contains two integer numbers n and k (1 ≤ n ≤ 10000, 1 ≤ k ≤ 109). The following n lines describe LCGs. Each line contains four integer numbers x(j) 0 , a(j), b(j), and c(j) (0 ≤ a(j),b(j) ≤ 1000, 0 ≤ x(j) 0 < c(j) ≤ 1000). Output If Roman’s problem has a solution, then write on the first line of the output file a single integer s — the maximum sum not divisible by k, followed on the next line by n integer numbers tj (0 ≤ tj ≤ 109) specifying some solution with this sum. Otherwise, write to the output file a single line with the number −1.
Sample input and output
2 3

1 1 1 6

2 4 0 5

8

4

1

2 2

0 7 2 8

2 5 0 6

-1

In the first example, one LCG is generating a sequence 1, 2, 3, 4, 5, 0, 1, 2, ..., while the other LCG a sequence 2, 3, 2, 3, 2, ....

In the second example, one LCG is generating a sequence 0, 2, 0, 2, 0, ..., while the other LCG a sequence 2, 4, 2, 4, 2, ....

题目中的xi+1是指xi的下一项。

第四场训练赛的题,是欧洲赛的题,比赛地址:传送门

题意:n行,每行x,a,b,c,推公式,每一行在这一行当中取一个数使得他们的和最大且不能被k整除,如果不存在输出-1。

题解:记录第一大和第二大的数,并且第二大的数不能被k整除,求出所有行中与第一个数相差最小的这个第二个数。如果最大的数的所有总和被k整除,就用这个数去换,记得用数组记录选取的数的下标。鸽笼原理最多c个数,如果算过就可以跳出,用动态数组记录。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
using namespace std;
const int maxn=1e6+;
const int mm=;
bool vis[maxn];
int f1[maxn],f2[maxn];
int main()
{
freopen("generators.in","r",stdin);
freopen("generators.out","w",stdout);
int n,k,ans=,tmp=mm,flag=-;
scanf("%d%d",&n,&k);
for(int i=; i<n; i++)
{ int x,a,b,c;
scanf("%d%d%d%d",&x,&a,&b,&c);
for(int j=; j<c; j++)
vis[j]=;
vector <int> data;
for(int j=; j<c; j++)
{
if(vis[x]) break;
vis[x]=;
data.push_back(x);
x=(a*x+b)%c;
}
int max1=-,max1i=-;
for (int i = ; i < data.size(); i++)
{
if (data[i] > max1)
{
max1 = data[i];
max1i = i;
}
}
ans+=max1;
int max2=-,max2i=-;
int tmp2=max1%k;
for (int i = ; i < data.size(); i++)
{
if (data[i] > max2&&(data[i]%k)!=tmp2)
{
max2 = data[i];
max2i = i;
}
}
f1[i]=max1i;
f2[i]=max2i;
int minn=max1-max2;
if(max2i!=-&&minn<tmp)
{
tmp=minn;
flag=i;
}
//cout<<max1<<" "<<max2<<endl;
}
if(ans%k==&&flag==-)
{
cout<<-<<endl;
}
else if(ans%k==)
{
f1[flag]=f2[flag];
ans-=tmp;
cout<<ans<<endl;
for(int i=;i<n-;i++)
cout<<f1[i]<<" ";
cout<<f1[n-]<<endl;
}
else
{
cout<<ans<<endl;
for(int i=;i<n-;i++)
cout<<f1[i]<<" ";
cout<<f1[n-]<<endl;
}
return ;
}

Gym 100851G Generators (vector+鸽笼原理)的更多相关文章

  1. CodeChef February Challenge 2018 Points Inside A Polygon (鸽笼原理)

    题目链接  Points Inside A Polygon 题意  给定一个$n$个点的凸多边形,求出$[ \frac{n}{10}]\ $个凸多边形内的整点. 把$n$个点分成$4$类: 横坐标奇, ...

  2. 1393 0和1相等串 鸽笼原理 || 化简dp公式

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1393 正解一眼看出来的应该是鸽笼原理.记录每个位置的前缀和,就是dp[i ...

  3. Codeforce-Ozon Tech Challenge 2020-C. Kuroni and Impossible Calculation(鸽笼原理)

    To become the king of Codeforces, Kuroni has to solve the following problem. He is given n numbers a ...

  4. HDU 5762 Teacher Bo (鸽笼原理) 2016杭电多校联合第三场

    题目:传送门. 题意:平面上有n个点,问是否存在四个点 (A,B,C,D)(A<B,C<D,A≠CorB≠D)使得AB的横纵坐标差的绝对值的和等于CD的横纵坐标差的绝对值的和,n<1 ...

  5. POJ_1065_Wooden_Sticks_(动态规划,LIS+鸽笼原理)

    描述 http://poj.org/problem?id=1065 木棍有重量 w 和长度 l 两种属性,要使 l 和 w 同时单调不降,否则切割机器就要停一次,问最少停多少次(开始时停一次). Wo ...

  6. poj 3370 鸽笼原理知识小结

    中学就听说过抽屉原理,可惜一直没机会见识,现在这题有鸽笼原理的结论,但其实知不知道鸽笼原理都可以做 先总结一下鸽笼原理: 有n+1件或n+1件以上的物品要放到n个抽屉中,那么至少有一个抽屉里有两个或两 ...

  7. poj 2356鸽笼原理水题

    关于鸽笼原理的知识看我写的另一篇博客 http://blog.csdn.net/u011026968/article/details/11564841 (需要说明的是,我写的代码在有答案时就输出结果了 ...

  8. UVA 10620 - A Flea on a Chessboard(鸽笼原理)

    UVA 10620 - A Flea on a Chessboard 题目链接 题意:给定一个跳蚤位置和移动方向.如今在一个国际象棋棋盘上,左下角为黑格,一个格子为s*s,推断是否能移动到白格子.问要 ...

  9. Gym - 100851G:Generators(人尽皆知但是WA题)

    题意:现在有函数,每一项Xi=(A*X(i-1)+B)%C.现在给定N个函数以及K:X0,A,B,C.然你再每个函数选择一个数,使得其和最大,而且不被K整除. X0,A,B,C<=1e3 :K& ...

随机推荐

  1. Dinic问题

    问题:As more and more computers are equipped with dual core CPU, SetagLilb, the Chief Technology Offic ...

  2. bzoj 3172 后缀数组|AC自动机

    后缀数组或者AC自动机都可以,模板题. /************************************************************** Problem: 3172 Us ...

  3. 学习笔记 BIT(树状数组)

    痛定思痛,打算切割数据结构,于是乎直接一发BIT 树状数组能做的题目,线段树都可以解决 反之则不能,不过树状数组优势在于编码简单和速度更快 首先了解下树状数组: 树状数组是一种操作和修改时间复杂度都是 ...

  4. Linux Process/Thread Creation、Linux Process Principle、sys_fork、sys_execve、glibc fork/execve api sourcecode

    相关学习资料 linux内核设计与实现+原书第3版.pdf(.3章) 深入linux内核架构(中文版).pdf 深入理解linux内核中文第三版.pdf <独辟蹊径品内核Linux内核源代码导读 ...

  5. schemaLocation value = 'xxxxxxxxxxxx' must have even number of URI's

    这是因为没有加上Spring的版本号,加上就行了,如: http://www.springframework.org/schema/beans/spring-beans.xsd -3.2.2 http ...

  6. web端测试和移动端测试的区别小记

    转:http://qa.blog.163.com/blog/static/19014700220157128345318/ 之前一直参与web端的测试,最近一个项目加入了移动端,本人有幸参与了移动端的 ...

  7. iOS开发的那些坑

    最近重新拿起了iOS的开发,使用OC和Swift混编,碰到了一些比较棘手的问题,在这里记录下来,方便自己以后或他人不再入坑.这篇文章的内容包含: UITableViewCell的真实结构在iOS的环境 ...

  8. curl 学习保存

    原文地址 http://www.jb51.net/article/48866.htm php中的curl使用入门教程和常见用法实例 作者: 字体:[增加 减小] 类型:转载   起先cURL是做为一种 ...

  9. HTTP负载测试——Tsung

    参考资料:http://blog.jobbole.com/87509/ 如何生成每秒百万级别的 HTTP 请求? 在进行负责测试时要牢记一件重要的事:你能在 Linux 上建立多少个 socket 连 ...

  10. JS面试题及答案总结

    1. 截取字符串abcdefg的efg  <div id="test">abcdefg</div> var mytext=document.getEleme ...