A. Rational Resistance
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output

standard output

Mad scientist Mike is building a time machine in his spare time. To finish the work, he needs a resistor with a certain resistance value.

However, all Mike has is lots of identical resistors with unit resistance
R0 = 1. Elements with other resistance can be constructed from these resistors. In this problem, we will consider the following as elements:

  1. one resistor;
  2. an element and one resistor plugged in sequence;
  3. an element and one resistor plugged in parallel.

With the consecutive connection the resistance of the new element equals
R = Re + R0. With the parallel connection the resistance of the new element equals.
In this caseRe equals the resistance of the element being connected.

Mike needs to assemble an element with a resistance equal to the fraction . Determine the smallest possible number of resistors
he needs to make such an element.

Input

The single input line contains two space-separated integers
a and b (1 ≤ a, b ≤ 1018). It is guaranteed that the fraction
is irreducible. It is guaranteed that a solution always exists.

Output

Print a single number — the answer to the problem.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is recommended to use thecin,
cout streams or the%I64d specifier.

Sample test(s)
Input
1 1
Output
1
Input
3 2
Output
3
Input
199 200
Output
200
Note

In the first sample, one resistor is enough.

In the second sample one can connect the resistors in parallel, take the resulting element and connect it to a third resistor consecutively. Then, we get an element with resistance.
We cannot make this element using two resistors.

题目意思:有很多1欧姆的电阻,问最少用多少个电阻可以等效成a/b欧姆;

注意用__int64;

分析:这个题有个规律,就是a/b,b/a所需要的电阻一样,只是串并联关系不一样而已,因此该题可以这样考虑:写成假分子的形式a/b,(a>b)取整数部分,然后对剩余的电阻a1/b1进行类似的运算(a1>b1)

知道a/b可以除尽位置sum记录的整数值之和就是答案:

程序:

#include"string.h"
#include"stdio.h"
int main()
{
__int64 a,b,p,t;
while(scanf("%I64d%I64d",&a,&b)!=-1)
{
__int64 sum=0;
while(1)
{
if(a<b)
{
t=a;
a=b;
b=t;
}
p=a/b;
sum+=p;
if(a%b==0)
break;
a-=b*p;
}
printf("%I64d\n",sum);
}
}

codeforces343A A. Rational Resistance的更多相关文章

  1. Codeforces Round #200 (Div. 1)A. Rational Resistance 数学

    A. Rational Resistance Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/343 ...

  2. Codeforces Round #200 (Div. 2) C. Rational Resistance

    C. Rational Resistance time limit per test 1 second memory limit per test 256 megabytes input standa ...

  3. codeforces 200 div2 C. Rational Resistance 思路题

    C. Rational Resistance time limit per test 1 second memory limit per test 256 megabytes input standa ...

  4. Codeforces 344C Rational Resistance

    Description Mad scientist Mike is building a time machine in his spare time. To finish the work, he ...

  5. [CodeForces 344C Rational Resistance]YY,证明

    题意:给若干个阻值为1的电阻,要得到阻值为a/b的电阻最少需要多少个. 思路:令a=mb+n,则a/b=m+n/b=m+1/(b/n),令f(a,b)表示得到a/b的电阻的答案,由f(a,b)=f(b ...

  6. CodeForces Round 200 Div2

    这次比赛出的题真是前所未有的水!只用了一小时零十分钟就过了前4道题,不过E题还是没有在比赛时做出来,今天上午我又把E题做了一遍,发现其实也很水.昨天晚上人品爆发,居然排到Rank 55,运气好的话没准 ...

  7. zzu--2014年11月16日月潭赛 B称号

    1229: Rational Resistance Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 8  Solved: 4 [id=1229" ...

  8. CF 200 div.1 A

    2013-10-11 16:45 Rational Resistance time limit per test 1 second memory limit per test 256 megabyte ...

  9. Codeforces Round #200 (Div. 1 + Div. 2)

    A. Magnets 模拟. B. Simple Molecules 设12.13.23边的条数,列出三个等式,解即可. C. Rational Resistance 题目每次扩展的电阻之一是1Ω的, ...

随机推荐

  1. PowerDesigner连接MySQL,建立逆向工程图解

    传说中,程序员们喜欢用powerDesign进行数据库建模.通常都是先设计出物理模型图,在转换出数据库需要的SQL语句,从而生成数据库.但,江湖中流传着"powerDesign逆向工程&qu ...

  2. 非模态对话框的PreTranslateMessage() 没有用,无法进去

    非模态对话框的的PreTranslateMessage确实进不去, 自然也无法用重载PreTranslateMessage的方法来响应键盘消息. 可以用Hook的方法来使其生效. http://bbs ...

  3. 初学MyBatis.net

    1.MyBatis.net介绍 MyBatis..net是一个简单,但是完整的ORM框架,它使你的实体对象与sql语句或者存储过程之间的映射变得很简单,并提供数据访问.包括两个主要框架 DataAcc ...

  4. 关于cocoa框架,你所要知道的一切(苹果官方文档,cocoa框架核心竞争力,必须收藏!)

    https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/Accessib ...

  5. TCP粘包

    一.通信协议TCP/UDP: TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务.客户端和服务器端都要有一一成对的socket, 因此 ...

  6. zepto源码--isEmptyObject,isNumeric,inArray,trim--学习笔记

    1.isEmptyObject,判断对象是否为空对象的函数 定义变量name,遍历传入对象的属性name,如果存在任何属性,则返回false,判定传入的参数为非空对象,否则即为空对象. 2.isNum ...

  7. gridcontrol中使用右健菜单popupMenu1

    private void gridView1_ShowGridMenu(object sender, DevExpress.XtraGrid.Views.Grid.GridMenuEventArgs ...

  8. C# HttpWebRequest 绝技

    http://www.sufeinet.com/thread-6-1-1.html 万能框架.分布式......

  9. CodeTimer

    using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using S ...

  10. App Store idfa被拒检查办法

    最近应用因为这个问题被拒两次,理由如下: PLA 3.3.12We found your app uses the iOS Advertising Identifier but does not in ...