原题: HDU 3362 http://acm.hdu.edu.cn/showproblem.php?pid=3362

开始准备贪心搞,结果发现太难了,一直都没做出来。后来才知道要用状压DP。

题意:题目给出n(n <= 18)个点的二维坐标,并说明某些点是被固定了的,其余则没固定,要求添加一些边,使得还没被固定的点变成固定的,可见题目中的图形sample。

由于n很小,而且固定点的顺序没有限制,所以需要用状态压缩DP。

注意:
1.当一个没固定的点和两个固定了的点连接后,该点就被(间接)固定了(三角形的稳定性质)
2.被固定的点还可以用来固定别的点

因此,对于当前需要固定的点,在已经是固定状态的点中选出两个距离当前点最小的,这就保证了局部最优,从起始状态开始转移,最后判断能否到达最终目标状态就可以了。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define Mod 1000000007
using namespace std;
#define N 100007 struct Point
{
double x,y;
int f;
}p[];
double dp[<<];
int unfix[];
double dis[];
int n; double Dis(int i,int j)
{
Point ka = p[i];
Point kb = p[j];
return (double)sqrt((ka.x-kb.x)*(ka.x-kb.x)+(ka.y-kb.y)*(ka.y-kb.y));
} double Fixit(int state,int tofix)
{
int i = ,j;
int tmp = state;
memset(dis,,sizeof(dis));
while(i < n)
{
if(tmp & ) //已固定点
{
unfix[i] = ;
dis[i] = Dis(tofix,i);
}
else
unfix[i] = ;
i++;
tmp >>= ;
}
double mini_1 = Mod;
int tag = -;
for(i=;i<n;i++) //选第一个点
{
if(!unfix[i]) //fixed
{
if(dis[i] < mini_1)
{
mini_1 = dis[i];
tag = i;
}
}
}
double mini_2 = Mod;
for(i=;i<n;i++) //选第二个点
{
if(i == tag) //选过
continue;
if(!unfix[i])
{
if(dis[i] < mini_2)
mini_2 = dis[i];
}
}
if(mini_1+mini_2 >= Mod)
return -;
return mini_1+mini_2;
} int main()
{
int i,j;
int Na;
while(scanf("%d",&n)!=EOF && n)
{
int S = ;
Na = (<<n)-;
for(i=;i<n;i++)
{
scanf("%lf%lf%d",&p[i].x,&p[i].y,&p[i].f);
if(p[i].f)
S |= (<<i);
}
for(i=;i<=Na;i++)
dp[i] = Mod;
dp[S] = ;
for(i=S;i<Na;i++)
{
if(dp[i] == Mod)
continue;
for(j=;j<n;j++) //选一个unfix的点固定
{
if(i & (<<j)) //已fix,跳过
continue;
double delta = Fixit(i,j);
if(delta == -)
continue;
else //更新固定完这个点后的最少花费
dp[i|(<<j)] = min(dp[i|(<<j)],dp[i]+delta);
}
}
if(dp[Na] == Mod)
puts("No Solution");
else
printf("%.6lf\n",dp[Na]);
}
return ;
}

2014 Super Training #1 B Fix 状压DP的更多相关文章

  1. 2014 Super Training #7 C Diablo III --背包问题(DP)

    原题: ZOJ 3769 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3769 一个带有一些限制的背包问题. 假设在没有限 ...

  2. 2014 Super Training #10 D 花生的序列 --DP

    原题: FZU 2170 http://acm.fzu.edu.cn/problem.php?pid=2170 这题确实是当时没读懂题目,连样例都没想通,所以没做了,所以还是感觉这样散漫的做不好,有些 ...

  3. 2014 Super Training #8 C An Easy Game --DP

    原题:ZOJ 3791 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3791 题意:给定两个0-1序列s1, s2,操作t ...

  4. 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理

    题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...

  5. HDU 3362 Fix (状压DP)

    题意:题目给出n(n <= 18)个点的二维坐标,并说明某些点是被固定了的,其余则没固定,要求添加一些边,使得还没被固定的点变成固定的, 要求总长度最短. 析:由于这个 n 最大才是18,比较小 ...

  6. HDUOJ Clear All of Them I 状压DP

    Clear All of Them I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 122768/62768 K (Java/Oth ...

  7. ZOJ3802 Easy 2048 Again (状压DP)

    ZOJ Monthly, August 2014 E题 ZOJ月赛 2014年8月 E题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?proble ...

  8. 【状压dp】cf906C. Party

    需要稍加分析结论:还有一些小细节 Arseny likes to organize parties and invite people to it. However, not only friends ...

  9. hdu 4778 Gems Fight! 状压dp

    转自wdd :http://blog.csdn.net/u010535824/article/details/38540835 题目链接:hdu 4778 状压DP 用DP[i]表示从i状态选到结束得 ...

随机推荐

  1. PHP学习笔记:伪静态规则的书写

    这里以阿帕奇为服务器软件,直接上案例: 1.把index.html重定向到index.php RewriteEngine On Options -Indexes ReWriteRule ^index. ...

  2. Java8 如何进行stream reduce,collection操作

    Java8 如何进行stream reduce,collection操作 2014-07-16 16:42 佚名 oschina 字号:T | T 在java8 JDK包含许多聚合操作(如平均值,总和 ...

  3. ASP.NET Web API 特性

    ASP.NET MVC 4 包含了 ASP.NET Web API, 这是一个创建可以连接包括浏览器.移动设备等多种客户端的 Http 服务的新框架, ASP.NET Web API 也是构建 RES ...

  4. FAQ_1_陌生的VERSION.SDK_INT

    看到VERSION.SDK_INT不禁诧异,这是何物?! 看API的定义,如下: 原来是一个常量值.但是这个常量值可以根据系统的不同而不同哟!为了揭开其神秘的面纱,将源码ctrl如下: 可以看出,获取 ...

  5. mysql实时同步到mssql的解决方案

    数据库在应用程序中是必不可少的部分,mysql是开源的,所以很多人它,mssql是微软的,用在windows平台上是非常方便的,所以也有很多人用它.现在问题来了,如何将这两个数据库同步,即数据内容保持 ...

  6. MS10-046漏洞测试

    这次用到MS10-046这个远程执行漏洞(Windows快捷方式LNK文件自动执行代码漏洞攻击) 命令: 1.   msfconsole    //启动MSF Metasploit 2.   sear ...

  7. 获取经过跳转后的url地址

    粗略一算,不写code已经好几个月了. 昨日受兄弟所托,为他写了一个小小的程序. 程序功能: 自动获取跳转后的Url地址 如下图所示: (newUrl.txt为转换后的地址信息...) 实现过程: 每 ...

  8. Microsoft Dynamics 2013 --Social Pane

    Microsoft Dynamics 2013 有一个新的东西--Social Pane (图1) 进入窗体设置,发现改选项卡的详细设置如下 (图2) Tab键的选项有3种[活动][公告][注释],若 ...

  9. 在Windows下将code style导入到Android Studio的方法

    很多网站上提供了Ahdroid studio的“代码样式”文件,那么作为win平台的用户,我们就需要学会如何导入这个样式文件.我也是查了很久才知道是怎么导入的,下面就是我的经验分享. 一.下载代码样式 ...

  10. GitHub 基本常用知识解答2

    1.如何拥有一个Git仓库的两种途径 (1)在已有的目录中,初始化一个新的. (2) 比如一个新的项目,或者一个已存在的项目,但该项目尚未有版本控制.如果你想要复制一份别人的项目, 或者与别人合作某个 ...