1图论的一个基本应用

下图描述了4个城市之间的航空航线图,

为了描述着4个城市之间航线的邻接关系,定义邻接矩阵

第i行描述从城市i出发,可以达到各个城市的情况,

可以证明,矩阵A^N表示一个人连续坐N次航班可以达到的城市,元素大小对应方法种数

例:下图描述了6个城市之间的航空航线图,带箭头线段表示两个城市之间的航线.

1若某人连续乘坐5次航班,那么他从哪一个城市出发到达哪一个城市方法最多

2若某人可以乘坐一次、二次、三次、或四次航班,那么他从哪一个城市出发总是不能达到哪一个城市

运行Test.m

%邻接矩阵
A=[0 1 0 0 0 1;0 0 1 1 0 0;0 0 0 1 1 0;0 1 0 0 0 0;1 0 1 0 0 0;0 1 0 0 1 0];
%连续乘坐5次航班
m =max(max(A^5));
[i,j] = find(A^5 == m);
fprintf('从一个城市出发到另一个城市方法最多有%d条,有:\n',m);
disp([i,j])
%可以乘坐1、2、3或4次
A = A+A^2+A^3+A^4;
[i,j] = find(A == 0);
fprintf('不能从一个城市达到另一个城市的有:\n');
disp([i,j])

2情报检索问题

假如数据库中包括了n个文件,而搜索所用的关键词有m个,关键词按字母顺序排列,我们就可以把数据库用一个mxn的矩阵A来表示,矩阵A的第j列表示第j个文件

矩阵A的第i行表示第i个关键词,矩阵A中的元素aij表示第i个关键词在第j个文件中出现的相对频率。用于检索的关键词清单用m维列向量x表示,假如检索策略中含有

i、j、k三个关键词,则让搜索向量x的第i、j、k个元素为1,其它为0。当确定了数据库矩阵和搜索向量x后,进行线性变换运算,y=A'x,y即为检索结果,数字大小对应着匹配度高低

3.MATLAB命令x=A\b

1)当方程组为适定方程组,x为方程组的唯一解

2)当方程组为欠定方程组时,x为方程组的一个特解

3)当方程组为超定方程组时,x为按照最小二乘原理得到的一组近似解

4已知向量组

请用向量u和v来线性表示向量w,并绘制向量图

易得方程组的解2u+3v=w

程序drawvec.m是一个绘制二维向量的函数

function drawvec(u)
plot([0;u(1)],[0;u(2)]);%画向量线段
hold on
theta = acos(u(1)/norm(u));%计算向量u与x轴的夹角,0<theta<pi
if(u(2) < 0)
theta = 2*pi - theta;%当u向量在第三和第四象限时,theta>pi
end
fill([u(1)-0.5*cos(theta+pi/12),u(1),u(1)-0.5*cos(theta-pi/12)],[u(2)-0.5*sin(theta+pi/12),u(2),u(2)-0.5*sin(theta-pi/12)],'black');%给向量箭头填充
hold off

程序la.m绘制了向量u和向量v线性表示向量w的几何图形,其中调用了drawvec.m

clear

close all
u=[1;2];v=[2;-1];w=[8;1];
u1 = u*2; v1= v*3;
%调用函数drawvec(),画向量
drawvec(u);hold on
drawvec(v);hold on
drawvec(u1);hold on
drawvec(v1);hold on
drawvec(w);hold on
%补虚线,将线条属性设置为虚线--
A = [u1,w];
B = [v1,w];
plot(A(1,:),A(2,:),'--k',B(1,:),B(2,:),'--r');
%显示坐标
text(A(1,1),A(2,1),['(',num2str(A(1,1)),',',num2str(A(2,1)),')'],'EdgeColor','red');
text(A(1,2),A(2,2),['(',num2str(A(1,2)),',',num2str(A(2,2)),')'],'EdgeColor','green');
text(B(1,1),B(2,1),['(',num2str(A(1,1)),',',num2str(A(2,1)),')'],'EdgeColor','blue');
axis([-2 10 -5 6]),grid on%设置坐标范围和网格线

运行la.m

线性代数与MATALB1的更多相关文章

  1. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  2. 斯坦福大学CS224d基础1:线性代数回顾

    转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...

  3. 算法库:基础线性代数子程序库(Basic Linear Algebra Subprograms,BLAS)介绍

    调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这 ...

  4. 【BZOJ】【TJOI2015】线性代数

    网络流/最小割/最大权闭合图 2333好开心,除了一开始把$500^2$算成25000……导致数组没开够RE了一发,可以算是一次AC~ 咳咳还是回归正题来说题解吧: 一拿到这道题,我就想:这是什么鬼玩 ...

  5. OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的!

    OpenGLES 怎样在十天内掌握线性代数 - 希望这是真的! 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业用途-保持一致&q ...

  6. MIT线性代数课程 总结与理解-第一部分

    概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...

  7. 线性代数-矩阵-【1】矩阵汇总 C和C++的实现

    矩阵的知识点之多足以写成一本线性代数. 在C++中,我们把矩阵封装成类.. 程序清单: Matrix.h//未完待续 #ifndef _MATRIX_H #define _MATRIX_H #incl ...

  8. 线性代数-矩阵-【2】矩阵生成 C和C++实现

    矩阵的知识点之多足以写成一本线性代数. 所以我们把矩阵的运算封装成矩阵类.以C++为主进行详解. 点击这里可以跳转至 [1]矩阵汇总:http://www.cnblogs.com/HongYi-Lia ...

  9. 带你领会 线性代数 微积分的本质 3blue1brown 动画效果帅出天际

    前段时间在 哔哩哔哩 上偶然发现了 3blue1brown 精美的动画,配上生动的讲解,非常适合帮助建立数学的形象思维 其中两大系列,非常值得反复观看: 线性代数的本质(Essence of line ...

随机推荐

  1. Unsupervised Classification - Sprawl Classification Algorithm

    Idea Points (data) in same cluster are near each others, or are connected by each others. So: For a ...

  2. Windows工作集内存

    Windows任务管理器默认情况下,“内存(私人工作集)”列处于选中状态. 私人工作集是工作集的一个子集,它是描述每个进程所使用的内存数量的技术术语.私人工作集专门描述了某个进程正在使用的且无法与其他 ...

  3. CSS属性选择器温故-4

    1.属性选择器就是通过元素属性来找到元素 2.属性选择器语法 CSS3遵循了惯用的编码规则,通配符的使用提高了样式表的书写效率,也使CSS3的属性选择器更符合编码习惯 3.浏览器兼容性 CSS选择器总 ...

  4. jquery实现页面控件拖动效果js代码

    ;(function($) { var DragPanelId = "divContext"; var _idiffx = 0; var _idiffy = 0; var _Div ...

  5. 小型工厂企业网站究竟该怎么做好SEO优化,从而带来更多订单?

    中 小企业以及小型工厂做好SEO工作,每年从SEO带来的订单量还是很可观的,随着互联网的蓬勃发展,越来越多的小型工厂型企业网站开始逐渐走向互联网营 销,开始逐渐利用互联网开展销售工作!但是大部分的工厂 ...

  6. android notification 传值关键

    android notification 传值关键在 onNewIntent方法里获取 @Override protected void onCreate(Bundle savedInstanceSt ...

  7. 浅谈Hex编码算法

    一.什么是Hex 将每一个字节表示的十六进制表示的内容,用字符串来显示. 二.作用 将不可见的,复杂的字节数组数据,转换为可显示的字符串数据 类似于Base64编码算法 区别:Base64将三个字节转 ...

  8. 获取当前屏幕显示的viewcontroller

    //获取当前屏幕显示的viewcontroller - (UIViewController *)getCurrentVC { UIViewController *result = nil; UIWin ...

  9. Struts2(十六)Json

    一.JSON Json就是浏览器和服务器之间交换数据的一种轻量级对象 javaSctipt中类似的对象操作 $(function() { var person = { "name" ...

  10. 【iOS开发】UIWebView与JavaScript(JS) 回调交互

    ------------------------------------------------- 很多关于objc 与 js 交互的文章都比较适用于 mac开发,iOS的webview 还是有所不一 ...