对gtx图像进行操作,使用numpy知识

如果让gtx这张图片在竖直方向上进行颠倒。
 

如果让gtx这张图片左右颠倒呢?
 

如果水平和竖直方向都要颠倒呢?
 

如果需要将gtx的颜色改变一下呢?
 

 
每隔5行数据取一行,列全取,显示的图片会如何呢?图片只剩一部分了
 

每隔5列取一列,行全取,显示的图片会如何?
 

马赛克一下?还可以更夸张地马赛克。
 

接近于岛国爱情动作片的马赛克了
 

还可以修改颜色值。
 
好了,接下来学习pandas模块了。
 
什么是pandas?
    · Python Data Analysis Library 或 pandas 是基于numpy的一种工具,该工具是为了解决数据分析任务而创建的
 
    · pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具(用excel打开一个500M的文件,非常耗时,更大的可能就打不开了)(用pandas可以打开2G的CSV格式的文件,CSV文件是可以用EXCEL打开的)。
 
    · pandas提供了大量能使我们快速便捷地处理数据的函数和方法
 
    · 它使Python成为强大而高效的数据分析环境的重要因素之一
        · Series 是一个类似数组的数据结构
        · DataFrame 数据框,类似于Excel,DataFrame组织数据,处理数据
    
 
Pandas的数据结构
    导入pandas:
 

    数据分析三剑客:numpy,serise,matplotlib
        
 
1、Series
    Series是一种类似于一维数组的对象,由下面两个部分组成:
 
        · values:一维数组(ndarray类型)
        · index:相关的数据索引标签
 

 
 
        1) Series的创建
            两种创建方式:
            (1)由列表或numpy数组创建
                    默认索引为0-n-1的整数型索引

                    第一列数值就是索引。
 
                    还可以通过设置index参数指定索引

                需要注意:索引的个数要和元素的个数对应,因为二者是一一对应的关系。
 

            nd如果是多维的该如何?

            报错了,说明Series中存放的数据必须是一维的。切记!
            特别的,由ndarray创建的是引用,而不是副本。对Series元素的改变会改变原来的ndarray对象中的元素。(列表没有这种情况)
 
 
        (2)由字典创建 
 

 
 
练习1:
使用多种方法创建以下Series,命名为s1
语文 150
数学 150
英语 150
理综 300
因为字典的元素是无序的,所以s1中的顺序就不一定是什么了。如果元素的顺序比较重要,就不要用这种方法了。
 

 
 
        2) Series的索引和切片
        可以使用中括号取单个索引(此时返回的是元素类型),或者中括号里一个列表取多个索引(此时返回的仍然是一个Series类型)。分为显式索引和隐式索引:
 
            (1)显式索引:
                    - 使用index中的元素作为索引值
                    - 使用.loc[](推荐)
                    
                    注意:此时是闭区间
 

 
            (2)隐式索引:
                    - 使用整数作为索引值
                    - 使用.iloc[](推荐)
                    
                    注意:此时是半开区间

 
 
            (3)切片
 
                    显式切片
 

                    隐式切片
 

 
 
        3) Series的基本概念
            可以把Series看成一个定长的有序字典
 
            可以通过shape,size,index,values等得到series的属性

                s.values的类型就是ndarray
                有了索引之后更方便
                百度就是网站的索引
 
                可以通过head()/tail()快速查看Series对象的样式,显式前/后几行。

  
                可见DataFrame是由Series组成的。
 
 
            当索引没有对应的值时,可能出现缺失数据显示NaN (not a number) 的情况

            二者不相等啊。
 
 
            可以使用pd.isnull()、pd.notnull()或自带isnull()、notnul()函数检测缺失数据

        因为null类型的数据是没有办法参与运算的,可以用如下方法把null类型的元素剔除掉。当数据量比较大的时候就用得着了,不能人工逐个判断了。
 

 
 
        Series对象及其实例都有一个name属性。
 

 
 
        4) Series的运算
 
            (1)适用于numpy的数组运算也适用于Series

                    如果 c、d 的NaN也想加上 10 可以尝试如下操作:
 

 
            (2)Series之间的运算
                    · 在运算中自动对齐不同索引的数据
                    · 如果索引不对应,则补NaN
 
 

      注意:想要保留所有的index,则需要使用.add()函数。

===========
练习:
    1:想一想Series运算和ndarray运算的规则有什么不同?

     2:新建另一个索引包含“文综”的Series s2,并与s2进行多种算术操作。思考如何保存所有数据。

4 pandas模块,Series类的更多相关文章

  1. pandas学习series和dataframe基础

    PANDAS 的使用 一.什么是pandas? 1.python Data Analysis Library 或pandas 是基于numpy的一种工具,该工具是为了解决数据分析人物而创建的. 2.p ...

  2. 【学习】DataFrame&Series类【pandas】

    参考链接:http://blog.csdn.net/yhb315279058/article/details/50226027 DataFrame类: DataFrame有四个重要的属性: index ...

  3. pandas模块(数据分析)------Series

    pandas是一个强大的Python数据分析的工具包. pandas是基于NumPy构建的. pandas的主要功能: 具备对其功能的数据结构DataFrame.Series 集成时间序列功能 提供丰 ...

  4. pandas模块常用函数解析之Series(详解)

    pandas模块常用函数解析之Series 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器输入网 ...

  5. Python数据分析 Pandas模块 基础数据结构与简介(一)

    pandas 入门 简介 pandas 组成 = 数据面板 + 数据分析工具 poandas 把数组分为3类 一维矩阵:Series 把ndarray强大在可以存储任意数据类型可以专门处理时间数据 二 ...

  6. python之pandas模块

    一.pandas模块是基于Numpy模块的,pandas的主要数据结构是Series和DadaFrame,下面引入这样的约定: from pandas import Series,DataFrame ...

  7. Python 数据处理扩展包: numpy 和 pandas 模块介绍

    一.numpy模块 NumPy(Numeric Python)模块是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list str ...

  8. 一句Python,一句R︱pandas模块——高级版data.frame

    先学了R,最近刚刚上手python,所以想着将python和R结合起来互相对比来更好理解python.最好就是一句python,对应写一句R. pandas可谓如雷贯耳,数据处理神器. 以下符号: = ...

  9. Pandas模块:表计算与数据分析

    目录 Pandas之Series Pandas之DataFrame 一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的. 3.p ...

随机推荐

  1. 如何的退出无响应的 SSH 连接

    ~. 具体操作是Shift+-,然后松开按.. tips如果无效,可以先按下Enter,然后进行上面的操作.

  2. 让DIV在屏幕上下左右居中

    转自:http://blog.sina.com.cn/s/blog_65d41dff0100v0iz.html 其实解决的思路是这样的:首们需要position:absolute;绝对定位.而层的定位 ...

  3. P2495 [SDOI2011]消耗战 虚树

    这是我做的第一道虚树题啊,赶脚不错.其实虚树也没什么奇怪的,就是每棵树给你一些点,让你多次查询,但是我不想每次都O(n),所以我们每次针对给的点建一棵虚树,只包含这些点和lca,然后在这棵虚树上进行树 ...

  4. [linux环境配置]个人用持续更新ing~

    alias ll='ls -la' export PATH=$PATH:~/Desktop/myscript alias gpush='git push origin HEAD:refs/for/ma ...

  5. bzoj1977 [BeiJing2010组队]次小生成树 Tree——严格次小生成树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1977 因为严格,所以要记录到 LCA 的一个次小值: 很快写好,然后改掉一堆错误后终于过了样 ...

  6. 利用Spinnaker创建持续交付流水线

    在Pivotal Container Service (PKS)上部署软件的方法多种多样,本文重点介绍如何使用Spinnaker在PKS(或任何Kubernetes群集)上进行持续交付. Pivota ...

  7. C# 截取字符串——

    string  strID ="NODE_aSDFghsdfgyuhjidfgh_45678" //得到_ 中间的数 int index = strID.IndexOf(" ...

  8. Xampp mysql无法启动的解决方案

    如果出现mysql 无法启动表明在安装xampp 前已经安装了mysql,造成mysql服务无法启动. 19:06:33  [mysql] MySQL Service detected with wr ...

  9. STL之vector篇

    #include<iostream> #include<cstdio> #include<cstring> #include<vector> #incl ...

  10. PHP基础知识测试题及解析

      本试题共40道选择题,10道判断题,考试时间1个半小时 一:选择题(单项选择,每题2分): 1. LAMP具体结构不包含下面哪种(A ) A:Windows系统 B:Apache服务器 C:MyS ...