题意:

如果一个十进制非负整数的所有数位从高位到低位是不减的,我们称它为“上升数”,例如1558,11,3,0都是上升数,而10,20170312则不是;

给定整数N,求最小的k使得N能被表示为k个上升数之和。

$1\leq N\leq 10^{500000}$

题解:

一个结论:每个上升数必定能被分解为九个全一数的和;

所谓“全一数”就是指1,1111,11111111这种每一位数都为1的数(包括0),证明显然。

设N可以被分解成K个全一数之和,显然答案$k=\lceil\frac{K}{9}\rceil$;

由于全一数不好处理,我们可以把一个长度为$l$的全一数变成$\frac{(10^{l+1}-1)}{9}$,那么有:

$N=\sum\limits_{i=1}^{K}\frac{(10^x)}{9}$(此处$x$代表不确定的位数)

$9N=\sum\limits_{i=1}^{K}(10^x-1)$

$9N+K=\sum\limits_{i=1}^{K}10^x$

这个式子是什么意思呢?如果不考虑进位,右边每一项都会使数位和+1,那么总体就说明$9N+K$的数位和等于$K$的数位和,此时$K$一定是9的倍数;

如果考虑进位,那么每进一位数位和就会减少9,因此$K$仍然要是9的倍数。

由于答案最多不会超过N的位数,枚举k,写个高精度乱做就行了。。。注意加法的时候没有进位就要break,这样是均摊$O(1)$的,否则是$O(n^2)$的。

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define inf 2147483647
#define eps 1e-9
using namespace std;
typedef long long ll;
int n,tot,a[];
char s[];
void mul(int a[],int &n,int k){
int p=;
tot=;
for(int i=;i<=n;i++){
p=a[i]*k+p;
a[i]=p%;
tot+=a[i];
p/=;
}
if(p)a[++n]=p;
tot+=p;
}
void add(int a[],int &n,int k){
int p=;
tot-=a[];
a[]+=k;
p=a[]/;
a[]%=;
tot+=a[];
for(int i=;i<=n;i++){
tot-=a[i];
a[i]+=p;
p=a[i]/;
a[i]%=;
tot+=a[i];
if(!p)break;
}
if(p)a[++n]=p;
tot+=p;
}
int main(){
scanf("%s",s);
n=strlen(s);
for(int i=;i<=n;i++){
a[i]=s[n-i]-'';
}
mul(a,n,);
for(int i=;i<=n;i++){
add(a,n,);
if(tot%==&&i*>=tot)return printf("%d",i),;
}
return ;
}

[agc011e]increasing numbers的更多相关文章

  1. [AGC011E] Increasing Numbers [数学]

    题面 传送门 思路 首先,我们观察一下上升数的性质 可以发现,它一定可以表示为最多9个全是1的数字的和 那么我们设$N$可以被表示成$k$个上升数的和,同时我们设$p_i=\underbrace{11 ...

  2. AGC011-E Increasing Numbers

    题意 给定一个数\(n\),\(n≤10^{500,000}\),问\(n\)最少可以拆分成几个不降数的和.一个不降数是在十进制位下,从高位往低位看,每个数都不会比高位的数更小的数 做法 不降数可以拆 ...

  3. [agc011E]Increasing Numbers-[思考题]

    Description 传送门 Solution 依题得所有不下降数(设为a)可以拆为若干个全1数的和(如:1558=1111+111+111+111+111+1+1+1) 并且任意a所能拆出的全一数 ...

  4. 【AtCoder】AGC011 E - Increasing Numbers

    题解 题是真的好,我是真的不会做 智商本还是要多开啊QwQ 我们发现一个非下降的数字一定可以用不超过九个1111111111...1111表示 那么我们可以得到这样的一个式子,假如我们用了k个数,那么 ...

  5. AT2341 Increasing Numbers

    传送门 还是猜结论呢 然后我们就想我们可以每次去掉尽量多的位数来保证次数最小,假装这是对的,先写一发,A了 考虑如何去掉尽量多的位数,我们可以找到最大的几位的不下降序列,把最后一个-1,后面全部改成9 ...

  6. AtCoder Grand Contest 011 E - Increasing Numbers(灵性乱搞)

    题意: 当一个整数高位数字总不小于低位数字,或者说写成字符串之后单调不下降,称之为上升数.求一个整数最少能表示为多少个上升数的和.(n<=1e500000) 分析: 考虑那些不下降的数字,一定可 ...

  7. NOIp2018模拟赛四十

    今天太晚了...题解到时候补吧(flag立好) 成绩:100+0+0=100 感觉A题本质暴力贪心?C题一道水题我居然没做...亏爆 A:[agc011e]increasing numbers B:[ ...

  8. POJ 1239 Increasing Sequences 动态规划

    题目链接: http://poj.org/problem?id=1239 Increasing Sequences Time Limit: 1000MSMemory Limit: 10000K 问题描 ...

  9. TZOJ 5963 Increasing Sequences(线性DP)

    描述 Given a string of digits, insert commas to create a sequence of strictly increasing numbers so as ...

随机推荐

  1. ​Java面向对象的概念整理

    Java中一切皆是对象! 注意:8种基本数据类型不支持面向对象的编程机制,基本数据类型的数据也不具备“对象”的特性:没有成员变量.方法可以被调用. 为解决8种基本数据类型不能当成Object类型(所有 ...

  2. POJ 2524 Ubiquitous Religions 【并查集】

    解题思路:输入总人数 n,和m组数据:即和杭电畅通工程相类似,对这m组数据做合并操作后,求最后一共有多少块区域. #include<stdio.h> int pre[50001]; int ...

  3. 省选模板_STL

    目录: 1. multiset 2. reverse 1.multiset namespace STL{ int main(){ multiset<int>::iterator s; mu ...

  4. java字符文件的读写

    1.java文件读写,首先我们需要导入相应的包:java.io.*; 2.代码如下: package Demo1; import java.io.*; public class FileWirteTe ...

  5. Nutch命令大全

    Nutch采用了一种命令的方式进行工作,其命令可以是对局域网方式的单一命令也可以是对整个Web进行爬取的分步命令.主要的命令如下: 1. Crawl Crawl是"org.apache.nu ...

  6. Nutch的配置(使用MySQL作为数据存储)

    首先先从http://www.apache.org/dyn/closer.cgi/nutch/下载安装包 这里假定nutch的根目录为:${APACHE_NUTCH_HOME} 配置${APACHE_ ...

  7. 洛谷——P1351 联合权值

    https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...

  8. iOS UI16_数据持久化

    // // Student.h // UI16_数据持久化 // // Created by dllo on 15/8/19. // Copyright (c) 2015年 zhozhicheng. ...

  9. Objective-C 和 Core Foundation 对象相互转换

    iOS同意Objective-C 和 Core Foundation 对象之间能够轻松的转换: CFStringRef aCFString = (CFStringRef)aNSString; NSSt ...

  10. HDU 4323 Contest 3

    编辑距离,经典的了.动态规划枚举即过. #include <iostream> #include <cstdio> #include <string.h> #inc ...