cvBoostStartTraining, cvBoostNextWeakClassifier和 cvBoostEndTraining
/****************************************************************************************\
* Boosting *
\****************************************************************************************/ typedef struct CvBoostTrainer
{
CvBoostType type; //一共四类例如以下
/* CV_DABCLASS = 0, // 2 class Discrete AdaBoost
CV_RABCLASS = 1, // 2 class Real AdaBoost
CV_LBCLASS = 2, // 2 class LogitBoost
CV_GABCLASS = 3, //2 class Gentle AdaBoost */ int count; /* (idx) ? number_of_indices : number_of_samples */
int* idx;
float* F;
} CvBoostTrainer; /*
* cvBoostStartTraining, cvBoostNextWeakClassifier, cvBoostEndTraining
*
* These functions perform training of 2-class boosting classifier
* using ANY appropriate weak classifier
*/ static
CvBoostTrainer* icvBoostStartTraining( CvMat* trainClasses, //训练样本的类别为0,1
CvMat* weakTrainVals, //训练的弱分类器的输出值,-1和1
CvMat* /*weights*/, //样本权重向量
CvMat* sampleIdx, //正负样本索引
CvBoostType type ) //类型如上
{
uchar* ydata;
int ystep;
int m;
uchar* traindata;
int trainstep;
int trainnum;
int i;
int idx; size_t datasize;
CvBoostTrainer* ptr; //该函数中这个最为重要 int idxnum;
int idxstep;
uchar* idxdata; assert( trainClasses != NULL );
assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 );
assert( weakTrainVals != NULL );
assert( CV_MAT_TYPE( weakTrainVals->type ) == CV_32FC1 ); CV_MAT2VEC( *trainClasses, ydata, ystep, m );
CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum ); CV_Assert( m == trainnum ); idxnum = 0;
idxstep = 0;
idxdata = NULL;
if( sampleIdx )
{
CV_MAT2VEC( *sampleIdx, idxdata, idxstep, idxnum );
}
/*******************************ptr的初始化*********************************************/
datasize = sizeof( *ptr ) + sizeof( *ptr->idx ) * idxnum;
ptr = (CvBoostTrainer*) cvAlloc( datasize ); //为ptr分配内存
memset( ptr, 0, datasize ); //初始化ptr,所有为0
ptr->F = NULL;
ptr->idx = NULL; ptr->count = m;
ptr->type = type; if( idxnum > 0 )
{
CvScalar s; //s内部是四个double型的val,分别为val[0],val[1],val[2]val[3] ptr->idx = (int*) (ptr + 1);
ptr->count = idxnum;
for( i = 0; i < ptr->count; i++ )
{
//将原始数据转化为cvScale类型的数据
cvRawDataToScalar( idxdata + i*idxstep, CV_MAT_TYPE( sampleIdx->type ), &s );
ptr->idx[i] = (int) s.val[0];
}
}
for( i = 0; i < ptr->count; i++ )
{
idx = (ptr->idx) ? ptr->idx[i] : i; *((float*) (traindata + idx * trainstep)) =
2.0F * (*((float*) (ydata + idx * ystep))) - 1.0F;////y*=2y-1,类别标签由{0,1}变为{-1,1}
} return ptr;
} /*
*
* Discrete AdaBoost functions
*依据训练出来的结果与标签进行比較,更新所有样本权重
*/
static
float icvBoostNextWeakClassifierDAB( CvMat* weakEvalVals,
CvMat* trainClasses,
CvMat* /*weakTrainVals*/,
CvMat* weights,
CvBoostTrainer* trainer )
{
uchar* evaldata;
int evalstep;
int m;
uchar* ydata;
int ystep;
int ynum;
uchar* wdata;
int wstep;
int wnum; float sumw;
float err;
int i;
int idx; CV_Assert( weakEvalVals != NULL );
CV_Assert( CV_MAT_TYPE( weakEvalVals->type ) == CV_32FC1 );
CV_Assert( trainClasses != NULL );
CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 );
CV_Assert( weights != NULL );
CV_Assert( CV_MAT_TYPE( weights ->type ) == CV_32FC1 ); CV_MAT2VEC( *weakEvalVals, evaldata, evalstep, m );
CV_MAT2VEC( *trainClasses, ydata, ystep, ynum );
CV_MAT2VEC( *weights, wdata, wstep, wnum ); CV_Assert( m == ynum );
CV_Assert( m == wnum ); sumw = 0.0F;
err = 0.0F;
for( i = 0; i < trainer->count; i++ )
{
idx = (trainer->idx) ? trainer->idx[i] : i; sumw += *((float*) (wdata + idx*wstep)); //所有训练样本权重和
err += (*((float*) (wdata + idx*wstep))) *
( (*((float*) (evaldata + idx*evalstep))) !=
2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F ); //训练错误样本的权重和
}
err /= sumw; //错误率比值
err = -cvLogRatio( err ); //取对数后,再取相反数,目的是把把err变成正值 for( i = 0; i < trainer->count; i++ )
{
idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx*wstep)) *= expf( err *
((*((float*) (evaldata + idx*evalstep))) !=
2.0F * (*((float*) (ydata + idx*ystep))) - 1.0F) );//依据训练的结果正确与否,用指数函数更新权重。
sumw += *((float*) (wdata + idx*wstep)); //更新权重后再又一次计算所有样本的权重和
}
for( i = 0; i < trainer->count; i++ )
{
idx = (trainer->idx) ? trainer->idx[i] : i; *((float*) (wdata + idx * wstep)) /= sumw; //把更新后的训练样本权重归一化
} return err; //返回err。注意这个err是取对数后,再取相反数的那个err,也就是上文程序中最后那个err
} typedef CvBoostTrainer* (*CvBoostStartTraining)( CvMat* trainClasses,
CvMat* weakTrainVals,
CvMat* weights,
CvMat* sampleIdx,
CvBoostType type ); typedef float (*CvBoostNextWeakClassifier)( CvMat* weakEvalVals,
CvMat* trainClasses,
CvMat* weakTrainVals,
CvMat* weights,
CvBoostTrainer* data ); CvBoostStartTraining startTraining[4] = {
icvBoostStartTraining,
icvBoostStartTraining,
icvBoostStartTrainingLB,
icvBoostStartTraining
}; CvBoostNextWeakClassifier nextWeakClassifier[4] = {
icvBoostNextWeakClassifierDAB,
icvBoostNextWeakClassifierRAB,
icvBoostNextWeakClassifierLB,
icvBoostNextWeakClassifierGAB
}; /*
*
* Dispatchers
*
*/
CV_BOOST_IMPL
CvBoostTrainer* cvBoostStartTraining( CvMat* trainClasses,
CvMat* weakTrainVals,
CvMat* weights,
CvMat* sampleIdx,
CvBoostType type )
{
return startTraining[type]( trainClasses, weakTrainVals, weights, sampleIdx, type );
} CV_BOOST_IMPL
void cvBoostEndTraining( CvBoostTrainer** trainer )
{
cvFree( trainer );
*trainer = NULL;
} CV_BOOST_IMPL
float cvBoostNextWeakClassifier( CvMat* weakEvalVals,
CvMat* trainClasses,
CvMat* weakTrainVals,
CvMat* weights,
CvBoostTrainer* trainer )
{
return nextWeakClassifier[trainer->type]( weakEvalVals, trainClasses,
weakTrainVals, weights, trainer );
}
cvBoostStartTraining, cvBoostNextWeakClassifier和 cvBoostEndTraining的更多相关文章
- 史上最全opencv源代码解读,opencv源代码具体解读文件夹
本博原创,如有转载请注明本博网址http://blog.csdn.net/ding977921830/article/details/46799043. opencv源代码主要是基于adaboost算 ...
- opencv源代码之中的一个:cvboost.cpp
我使用的是opencv2.4.9.安装后.我的cvboost..cpp文件的路径是........\opencv\sources\apps\haartraining\cvboost.cpp.研究源代码 ...
- opencv源代码分析之二:cvhaartraining.cpp
我使用的是opencv2.4.9.安装后.我的cvboost..cpp文件的路径是........\opencv\sources\apps\haartraining\cvhaartraining.cp ...
随机推荐
- 基本数据类型(list、tuple)
1.列表 1.1 定义 li=[1,2,3] 每个元素逗号隔开 list("abc") 迭代 列表是一个容器 => 任意类型 列表是有序的 => 索引 切片 步长 列表 ...
- linux查看系统cpu信息
# 查看物理CPU个数 cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l # 查看每个物理CPU中core的个数(即 ...
- 集合(set)的基本操作
集合是一个无序的,不重复的数据组合,它的主要作用如下: 去重,把一个列表变成集合,就自动去重了 集合中的元素必须是不可变类型 关系测试,测试两组数据之前的交集.差集.并集等关系 常用操作 a = se ...
- luogu P4139 上帝与集合的正确用法(扩展欧拉定理)
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...
- SPOJ 962 Intergalactic Map
Intergalactic Map Time Limit: 6000ms Memory Limit: 262144KB This problem will be judged on SPOJ. Ori ...
- 在pycharm中配置Anaconda以及pip源配置
在学习推荐系统.机器学习.数据挖掘时,python是非常强大的工具,也有很多很强大的模块,但是模块的安装却是一件令人头疼的事情. 现在有个工具--anaconda,他已经帮我们集成好了很多工具了!an ...
- 实验了一下对于struct引用的成员的改动
今天写代码的时候,不确定struct用引用传递给函数的时候,他的成员在函数里面改变的时候,是否能影响到外面. 实验了一下 #include <stdio.h> #include <s ...
- 【Android】资源系列(二) -- 文件原样保留的资源assets和res/raw文件夹
这两个文件夹都能够存放文件.而在打包的时候被原样保留. 那用这两个文件夹可以做什么事呢? 1.放一个apk,要用的时候调出来.免得去下载server下载. 2.放一个sql,当app数据库非常大的时候 ...
- 【我所认知的BIOS】系列blog整理 1.23.2016.zip
这几年来,蛮多小伙伴都给我发邮件拿PDF版本号. 几年前写的文章格式什么的实在是太粗糙.近期我把全部的文章都整理了一下.事实上该想法已经早就有了,仅仅是近期才開始空暇.如今我把全部的文章整理好了以后上 ...
- RvmTranslator7.0-OBJ
RvmTranslator7.0-OBJ eryar@163.com RvmTranslator can translate the RVM file exported by AVEVA Plant( ...