大意:给出一个有向图,问能否在只去掉一条边的情况下破掉所有的环

解析:最直接的是枚举每个边,将其禁用,然后在图中找环,如果可以就YES,都不行就NO

复杂度O(N*M)看起来不超时

但是实现了以后发现即使优化到不清空vis数组(时间戳标记),也仍然超时。

因为O(N*M)已经很接近时间复杂度上界,常数稍大就GG。

不过可以脑补一下取巧算法:在不超时的前提下,随机取K个边进行检验~~~。不过数据多了就非常容易GG。理论上还是可行的。

正解:从枚举边变为枚举点,删掉到达一个点的某条边可以认为是该点入度 -1 ,然后做拓扑排序。

如果所有点都能访问到,说明没有环,YES。

如果有的点不能访问到,则说明图中存在环,删到达该点的某条边不可行。

入度 -1 的正确性:

可以认为是暂时不具体考虑删掉的是那条边,到了这个点的入边只剩一个没有访问的时候,该点的入度为0,可以开始以该点为起点dfs(bfs也行),如果该点正好在某个环内,就直接破掉(遍历)了这个环。、

 /*
Welcome Hacking
Wish You High Rating
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<string>
using namespace std;
int read(){
int xx=,ff=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')ff=-;ch=getchar();}
while(ch>=''&&ch<=''){xx=(xx<<)+(xx<<)+ch-'';ch=getchar();}
return xx*ff;
}
const int maxn=,maxm=;
int N,M,lin[maxn],len,in_[maxn],deg[maxn];
struct edge{
int y,next;
}e[maxm];
inline void insert(int xx,int yy){
e[++len].next=lin[xx];
lin[xx]=len;
e[len].y=yy;
in_[yy]++;
}
bool vis[maxn];
void dfs(int x){
vis[x]=;
for(int i=lin[x];i;i=e[i].next){
deg[e[i].y]--;
if(!vis[e[i].y]){
if(deg[e[i].y]<=)
dfs(e[i].y);
}
}
}
int main(){
//freopen("in.txt","r",stdin);
N=read(),M=read();
for(int i=;i<=M;i++){
int t1=read(),t2=read();
insert(t1,t2);
}
for(int i=;i<=N;i++){
for(int j=;j<=N;j++)
deg[j]=in_[j];
memset(vis,,sizeof(vis));
deg[i]--;
for(int j=;j<=N;j++)
if((!vis[j])&&deg[j]<=)
dfs(j);
bool OK=;
for(int j=;j<=N;j++)
if(!vis[j]){
OK=;
break;
}
if(OK){
printf("YES\n");
return ;
}
}
printf("NO\n");
return ;
}

codeforces 915D Almost Acyclic Graph 拓扑排序的更多相关文章

  1. 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环

    [题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...

  2. CodeForces 915D Almost Acyclic Graph

    Description You are given a directed graph consisting of \(n\) vertices and \(m\) edges (each edge i ...

  3. CodeForces 909E Coprocessor(无脑拓扑排序)

    You are given a program you want to execute as a set of tasks organized in a dependency graph. The d ...

  4. Codeforces 919D:Substring(拓扑排序+DP)

    D. Substring time limit: per test3 seconds memory limit: per test256 megabytes inputstandard: input ...

  5. CodeForces 510C Fox And Names (拓扑排序)

    <题目链接> 题目大意: 给你一些只由小写字母组成的字符串,现在按一定顺序给出这些字符串,问你怎样从重排字典序,使得这些字符串按字典序排序后的顺序如题目所给的顺序相同. 解题分析:本题想到 ...

  6. Codeforces Round #290 (Div. 2) 拓扑排序

    C. Fox And Names time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  7. Codeforces Beta Round #29 (Div. 2, Codeforces format) C. Mail Stamps 拓扑排序

    C. Mail Stamps     One day Bob got a letter in an envelope. Bob knows that when Berland's post offic ...

  8. Codeforces 875C National Property(拓扑排序)

    题目链接  National Property 给定n个单词,字符集为m 现在我们可以把其中某些字母变成大写的.大写字母字典序大于小写字母. 问是否存在一种方案使得给定的n个单词字典序不下降. 首先判 ...

  9. 拓扑排序(Topological Sort)

    Graph 拓扑排序(Topological Sort) 假设一个应用场景:你用 C 编写了一个爬虫工具,其中有很多自定义的库:queue.c.queue.h.stack.c.stack.h.heap ...

随机推荐

  1. JS高级——apply与call

    上下文调用模式 可以修改this的值,也就是可以修改函数的调用方式,apply.call可以修改函数调用上下文,也就是this的值 <script> var name = "莱昂 ...

  2. SQl基本操作——try catch

    begin try ... end try begin catch ... end catch

  3. MyEclipse中VSS的使用详解

    本文系转载,原文地址http://hi.baidu.com/yi88cheng/blog/item/13dd862f765e6b5c4fc226e5.html

  4. abstract class和interface 抽象类与接口类的区别

    抽象类与类型定义相关: 接口类与行为规范相关: 接口类不是类型. 抽象类:是不完整的类,函数实现未定义:可以继承,不可以实例化. 接口类:接口类不是类:是类间交互的规范:不能继承.不能实例化,只能实现 ...

  5. C# 打开模态对话框 和打开文件夹

    C# 打开另一个窗体,(模态对话框) Form1 frm= new Form1(); //创建对象 DialogResult retServer = frm.ShowDialog(); //模式对话框 ...

  6. CVPR 2017 Paper list

    CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...

  7. Day 12 字符串和正则表达式

    使用正则表达式 正则表达式相关知识 在编写处理字符串的程序或网页时,经常会有查找符合某些复杂规则的字符串的需要,正则表达式就是用于描述这些规则的工具,换句话说正则表达式是一种工具,它定义了字符串的匹配 ...

  8. Maximum Value(unique函数,lower_bound()函数,upper_bound()函数的使用)

    传送门 在看大佬的代码时候遇到了unique函数以及二分查找的lower_bound和upper_bound函数,所以写这篇文章来记录以备复习. unique函数 在STL中unique函数是一个去重 ...

  9. js兼用性

    1.document.formName.item("itemName") 问题 说明:IE下,可以使用document.formName.item("itemName&q ...

  10. Django REST framework 分页

    三种分页:根据页码.根据索引.根据加密 http://www.xx.com/courses/?page=1&size=10 http://www.xx.com/courses/?offset= ...