To summarize, principal component analysis involves evaluating the mean x and the covariance matrix S

of the data set and then finding the M eigenvectors of S corresponding to the M largest eigenvalues. If we

plan to project our data onto the first M principal compents, then we only need to find the first M eigenvalues

and eigenvectors.

PCA can be defined as the orthogonal projection of the data onto a lower dimensional linear space, known as

the principal subspace, such that the variance of the projected data is maximized. Equivalently, it can be defined

as the linear projection that minimizes the average projection cost, defined as the mean squared distance between

the data points and their projections.

Consider a data set of observations {xn} where n = 1,...,N, and xn is a Euclidean variable with dimensionality D.

Our goal is to project the data onto a space having dimensionality M < D while maximizing the variance of the projected

data.

The general solution to the minimization of J for arbitrary D and arbitrary M < D is obtained by choosing the {ui} to be

eigenvectors of the covariance matrix given by Suiiui. where i=1,...,D, and as usual the eigenvectors {ui} are chosen to

be orthonormal.

Principal Component Analysis ---- PRML读书笔记的更多相关文章

  1. 《principal component analysis based cataract grading and classification》学习笔记

    Abstract A cataract is lens opacification caused by protein denaturation which leads to a decrease i ...

  2. Principal Component Analysis(PCA) algorithm summary

    Principal Component Analysis(PCA) algorithm summary mean normalization(ensure every feature has sero ...

  3. Robust Principal Component Analysis?(PCP)

    目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...

  4. Sparse Principal Component Analysis via Rotation and Truncation

    目录 对以往一些SPCA算法复杂度的总结 Notation 论文概述 原始问题 问题的变种 算法 固定\(X\),计算\(R\) 固定\(R\),求解\(X\) (\(Z =VR^{\mathrm{T ...

  5. PCA(Principal Component Analysis)主成分分析

    PCA的数学原理(非常值得阅读)!!!!   PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可 ...

  6. Principal Component Analysis(PCA)

    Principal Component Analysis(PCA) 概念 去中心化(零均值化): 将输入的特征减去特征的均值, 相当于特征进行了平移, \[x_j - \bar x_j\] 归一化(标 ...

  7. (4)主成分分析Principal Component Analysis——PCA

    主成分分析Principal Component Analysis 降维除了便于计算,另一个作用就是便于可视化. 主成分分析-->降维--> 方差:描述样本整体分布的疏密,方差越大-> ...

  8. 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理

    0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...

  9. Probabilistic Principal Component Analysis

    目录 引 主要内容 EM算法求解 附录 极大似然估计 代码 Tipping M E, Bishop C M. Probabilistic Principal Component Analysis[J] ...

随机推荐

  1. JS——math

    random() 方法可返回介于 0 ~ 1 之间的一个随机数. Math.random() 0.0 ~ 1.0 之间的一个伪随机数,但是不包括0和1.

  2. (转)Hibernate快速入门

    http://blog.csdn.net/yerenyuan_pku/article/details/64209343 Hibernate框架介绍 什么是Hibernate 我们可以从度娘上摘抄这样有 ...

  3. 宏基因组扩增子图表解读2散点图:组间整体差异分析(Beta多样性)

    散点图 数据点在直角坐标系平面上的分布图.在宏基因组领域,散点图常用于展示样品组间的Beta多样性,常用的分析方法有主成分分析(PCA),主坐标轴分析(PCoA/MDS)和限制条件的主坐标轴分析(CP ...

  4. mysql高可用架构mha之master_ip_failover脚本

    脚本如下:           #!/usr/bin/env perl use strict; use warnings FATAL => 'all'; use Getopt::Long; my ...

  5. hdu 4876

    ZCC loves cards Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. 非递归全排列 python实现

    python algorithm 全排列(Permutation) 排列(英语:Permutation)是将相异物件或符号根据确定的顺序重排.每个顺序都称作一个排列.例如,从一到六的数字有720种排列 ...

  7. LVM和RAID

    RAID: Redundant Arrays of Inexpensive Disks Independent Berkeley: A case for Redundent Arrays of Ine ...

  8. LVM(Logical Volume Manager)逻辑卷管理

    本文实验部分,完全由本人亲自动手实践得来 文章中有部分的内容是我个人通过实验测试出来的,虽以目前本人的能力还没发现不通之处,但错误难免,所以若各位朋友发现什么错误,或有疑惑.更好的建议等,盼请各位能在 ...

  9. clock()函数的使用

    **clock()捕捉从程序开始运行到clock()被调用时所耗费的时间,这个时间单位是clock tick, 即"时钟打点." 常数CLK_TCK:机器时钟每秒所走的时钟打点数* ...

  10. 6 DataFrame处理丢失数据--数据清洗

    处理丢失数据       有两种丢失数据:                  · None         · np.nan(NaN)     1 None     None是Python自带的,其类 ...