先说KM算法求二分图的最佳匹配思想,再详讲KM的实现。
【KM算法求二分图的最佳匹配思想】

对于具有二部划分( V1, V2 )的加权完全二分图,其中 V1= { x1, x2, x3, ... , xn }, V2= { y1, y2, y3, ... , yn },边< xi, yj >具有权值 Wi,j 。该带权二分图中一个总权值最大的完美匹配,称之为最佳匹配。
 
记 L(x) 表示结点 x 的标记量,如果对于二部图中的任何边<x,y>,都有 L(x)+ L(y)>= Wx,y,我们称 L 为二部图的可行顶标。
设 G(V,E) 为二部图, G'(V,E') 为二部图的子图。如果对于 G' 中的任何边<x,y> 满足, L(x)+ L(y)== Wx,y,我们称 G'(V,E') 为 G(V,E) 的等价子图。
 
定理一:设 L 是二部图 G 的可行顶标。若 L 等价子图 G有完美匹配 M,则 M 是 G 的最佳匹配。
证明:由于 GL 是 G 的等价子图,M 是 GL 的完美匹配,所以,M 也是 G  的完美匹配。以由于对于匹配 M 的每条边 e ,都有 e∈ E( GL ),而且 M 中每条边覆盖每个顶点正好一次,所以
W( M )= å W(e), e∈ M = å L(x), x∈ V
另一方面,对于 G 的任何完美匹配 M' 有
W( M' )= å W(e), e∈ M' <= å L(x), x∈ V
于是 W( M )>= W( M' ),即 M 是 G 的最优匹配。
 
由上述定理,我们可以通过来不断修改可行顶标,得到等价子图,从而求出最佳匹配。
就像匈牙利算法一样,我们依次为每一个顶点 i 寻找增广路径,如果寻找增广路径失败,我们就修改相应的可行顶标,来得到增广路径。
如图:
|  1  2  3  |
|  3  2  4  |
|  2  3  5  |
若要对这个完全二分图求最佳匹配
 
初始化:
Lx(1)= max{ y| w(1,y), 1<= y<= 3 }= max{ 1, 2, 3 }= 3, Ly(1)= 0
Lx(2)= max{ 3, 2, 4 }= 4, Ly(2)= 0
Lx(3)= max{ 2, 3, 5 }= 5, Ly(3)= 0;
我们建立等价子图( 满足 Lx(x)+ Ly(y)== W(x,y) ) 如下:
 
对于该图,运用匈牙利算法对 X 部顶点 1 求增广路径,得到一个匹配,如图( 红色代表匹配边 ):
 
对 X 部顶点 2 求增广路径失败,寻找增广路径的过程为 X 2-> Y 3-> X 1。我们把寻找增广路径失败的 DFS 的交错树中,在 X 部顶点集称之为 S, 在 Y 部的顶点集称之为 T。则 S= { 1, 2 },T= { 3 }。现在我们就通过修改顶标值来扩大等价子图,如何修改。

 
1)   我们寻找一个 d 值,使得 d= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y), x∈ S, y∉ T },因些,这时 d= min{
Lx(1)+Ly(1)-W(1,1),  Lx(1)+Ly(2)-W(1,2),  Lx(2)+Ly(1)-W(2,1),  Lx(2)+Ly(2)-W(2,2) }=
min{ 3+0- 1, 3+0-2,  4+0-3,  4+0-2 }= min{ 2, 1, 1, 2 }= 1。
寻找最小的 d 是为了保证修改后仍满足性质对于边 <x,y> 有 Lx(x)+ Ly(y)>= W(x,y)。
 
2)   然后对于顶点 x
1. 如果 x∈ S 则 Lx(x)= Lx(x)- d。
2. 如果 x∈ T 则 Ly(x)= Ly(x)+ d。
3. 其它情况保持不变。
如此修改后,我们发现对于边<x,y>,顶标 Lx(x)+ Ly(y) 的值为
1.  Lx(x)- d+ Ly(y)+ d,  x∈ S, y∈ T。
2.  Lx(x)+ Ly(y),  x∉ S,  y∉ T。
3.  Lx(x)- d+ Ly(y), x∈ S, y∉ T。
4.  Lx(x)+ Ly(y)+ d, x∉ S,  y∈ T。
易知,修改后对于任何边仍满足 Lx(x)+ Ly(y)>= W(x,y),并且第三种情况顶标值减少了 d,如此定会使等价子图扩大。
 
就上例而言: 修改后 Lx(1)= 2, Lx(2)= 3, Lx(3)= 5, Ly(1)= 0, Ly(1)= 0, Ly(2)= 0, Ly(3)= 1。
这时 Lx(2)+Ly(1)=3+0=3= W(2,1),在等价子图中增加了一条边,等价子图变为:
如此按以上方法,得到等价子图的完美匹配。

 
另外计算 d 值的时候可以进行一些优化。
定义 slack(y)= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y),x∈ S,  y∉ T }
这样能在寻找增广路径的时候就顺便将 slack 求出。

(以上为摘上网络)

【KM算法及其具体过程】
(1)可行点标:每个点有一个标号,记lx[i]为X方点i的标号,ly[j]为Y方点j的标号。如果对于图中的任意边(i, j, W)都有lx[i]+ly[j]>=W,则这一组点标是可行的。特别地,对于lx[i]+ly[j]=W的边(i, j, W),称为可行边
(2)KM 算法的核心思想就是通过修改某些点的标号(但要满足点标始终是可行的),不断增加图中的可行边总数,直到图中存在仅由可行边组成的完全匹配为止,此时这个 匹配一定是最佳的(因为由可行点标的的定义,图中的任意一个完全匹配,其边权总和均不大于所有点的标号之和,而仅由可行边组成的完全匹配的边权总和等于所 有点的标号之和,故这个匹配是最佳的)。一开始,求出每个点的初始标号:lx[i]=max{e.W|e.x=i}(即每个X方点的初始标号为与这个X方 点相关联的权值最大的边的权值),ly[j]=0(即每个Y方点的初始标号为0)。这个初始点标显然是可行的,并且,与任意一个X方点关联的边中至少有一条可行边
(3)然后,从每个X方点开始DFS增广。DFS增广的过程与最大匹配的Hungary算法基本相同,只是要注意两点:一是只找可行边,二是要把搜索过程中遍历到的X方点全部记下来(可以用vst搞一下),以进行后面的修改;
(4) 增广的结果有两种:若成功(找到了增广轨),则该点增广完成,进入下一个点的增广。若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的 数量增加。方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,所有在增广轨中的Y方点的标号全部加上一个常数d,则 对于图中的任意一条边(i, j, W)(i为X方点,j为Y方点):
<1>i和j都在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变(原来是可行边则现在仍是,原来不是则现在仍不是);
<2>i在增广轨中而j不在:此时边(i, j)的(lx[i]+ly[j])的值减少了d,也就是原来这条边不是可行边(否则j就会被遍历到了),而现在可能是;
<3>j在增广轨中而i不在:此时边(i, j)的(lx[i]+ly[j])的值增加了d,也就是原来这条边不是可行边(若这条边是可行边,则在遍历到j时会紧接着执行DFS(i),此时i就会被遍历到),现在仍不是;
<4>i和j都不在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变。
这 样,在进行了这一步修改操作后,图中原来的可行边仍可行,而原来不可行的边现在则可能变为可行边。那么d的值应取多少?显然,整个点标不能失去可行性,也 就是对于上述的第<2>类边,其lx[i]+ly[j]>=W这一性质不能被改变,故取所有第<2>类边的 (lx[i]+ly[j]-W)的最小值作为d值即可。这样一方面可以保证点标的可行性,另一方面,经过这一步后,图中至少会增加一条可行边。
(5)修改后,继续对这个X方点DFS增广,若还失败则继续修改,直到成功为止;
(6)以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶 标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开 始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与 A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修 改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d。

【求二分图的最小匹配】
只需把权值取反,变为负的,再用KM算出最大权匹配,取反则为其最小权匹配。

hdoj 2255

#include <stdio.h>
#include <string.h>
#define M 310
#define inf 0x3f3f3f3f int n,nx,ny;
int link[M],lx[M],ly[M],slack[M]; //lx,ly为顶标,nx,ny分别为x点集y点集的个数
int visx[M],visy[M],w[M][M]; int DFS(int x)
{
visx[x] = 1;
for (int y = 1;y <= ny;y ++)
{
if (visy[y])
continue;
int t = lx[x] + ly[y] - w[x][y];
if (t == 0) //
{
visy[y] = 1;
if (link[y] == -1||DFS(link[y]))
{
link[y] = x;
return 1;
}
}
else if (slack[y] > t) //不在相等子图中slack 取最小的
slack[y] = t;
}
return 0;
}
int KM()
{
int i,j;
memset (link,-1,sizeof(link));
memset (ly,0,sizeof(ly));
for (i = 1;i <= nx;i ++) //lx初始化为与它关联边中最大的
for (j = 1,lx[i] = -inf;j <= ny;j ++)
if (w[i][j] > lx[i])
lx[i] = w[i][j]; for (int x = 1;x <= nx;x ++)
{
for (i = 1;i <= ny;i ++)
slack[i] = inf;
while (1)
{
memset (visx,0,sizeof(visx));
memset (visy,0,sizeof(visy));
if (DFS(x)) //若成功(找到了增广轨),则该点增广完成,进入下一个点的增广
break; //若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。
//方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,
//所有在增广轨中的Y方点的标号全部加上一个常数d
int d = inf;
for (i = 1;i <= ny;i ++)
if (!visy[i]&&d > slack[i])
d = slack[i];
for (i = 1;i <= nx;i ++)
if (visx[i])
lx[i] -= d;
for (i = 1;i <= ny;i ++) //修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d
if (visy[i])
ly[i] += d;
else
slack[i] -= d;
}
}
int res = 0;
for (i = 1;i <= ny;i ++)
if (link[i] > -1)
res += w[link[i]][i];
return res;
}
int main ()
{
int i,j;
while (scanf ("%d",&n)!=EOF)
{
nx = ny = n;
// memset (w,0,sizeof(w));
for (i = 1;i <= n;i ++)
for (j = 1;j <= n;j ++)
scanf ("%d",&w[i][j]);
int ans = KM();
printf ("%d\n",ans);
}
return 0;
}

  

KM算法 详解+模板的更多相关文章

  1. KM算法详解+模板

    http://www.cnblogs.com/wenruo/p/5264235.html KM算法用来求二分图最大权完美匹配. 本文配合该博文服用更佳:趣写算法系列之--匈牙利算法 现在有N男N女,男 ...

  2. KM算法详解[转]

    KM算法详解 原帖链接:http://www.cnblogs.com/zpfbuaa/p/7218607.html#_label0 阅读目录 二分图博客推荐 匈牙利算法步骤 匈牙利算法博客推荐 KM算 ...

  3. 【原创】我的KM算法详解

    0.二分图 二分图的概念 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V, E)是一个无向图.如果顶点集V可分割为两个互不相交的子集X和Y,并且图中每条边连接的两个顶点一个在X中,另一个在Y ...

  4. manacher算法 详解+模板

    manacher算法可以解决字符串的回文子串长度问题. 个人感觉szy学长讲的非常好,讲过之后基本上就理解了. 那就讲一下个人的理解.(参考了szy学长的ppt) 如果一个回文子串的长度是偶数,对称轴 ...

  5. manacher算法详解+模板 P3805

    前言: 记住manacher是一个很简单的算法. 首先我们来了解一下回文字串的定义:若一个字符串中的某一子串满足回文的性质,则称其是回文子串.(注意子串必须是连续的,而子序列是可以不连续的) 那么若给 ...

  6. KMP算法 详解+模板

    本文大部分摘自szy学长的ppt<string>中的KMP部分. %%%膜拜szy大神orz 1.概述 KMP 算法是用来解决单模匹配问题的一种算法. 如果暴力的进行单模匹配,那么时间复杂 ...

  7. KMP算法详解&&P3375 【模板】KMP字符串匹配题解

    KMP算法详解: KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt(雾)提出的. 对于字符串匹配问题(such as 问你在abababb中有多少个 ...

  8. 高斯消元法(Gauss Elimination)【超详解&模板】

    高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. ...

  9. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

随机推荐

  1. Parallel.For

    Parallel.For 你可能忽视的一个非常实用的重载方法    说起Parallel.For大家都不会陌生,很简单,不就是一个提供并行功能的for循环吗? 或许大家平时使用到的差不多就是其中最简单 ...

  2. yii2框架学习一 yii安装与常见问题

    1 安装安装有两种  cpmposer 喝归档文件 安装  这里采用的归档文件安装    归档文件安装分为两种 基础末班和高级模板,这里采用高级模板  在官网或者yii-china 下载归档文件  解 ...

  3. DapperPoco

    DapperPoco -- 基于Dapper的.轻量级的.高性能的.简单的.灵活的ORM框架 为什么要重复造轮子 因为现有的轮子都在某些方面不太令我满意,下面我来一一点评一下,欢迎拍砖. Entity ...

  4. Delphi绘图相关对象(TCanvas对象的方法)

    TCanvas对象的方法 方法 说明 Arc Arc(x1,y1,x2,y2,x3,y3,x4,y4 : Integer); Arc方法在椭圆上画一段弧,椭圆由(x1,y1).(x2,y2) 两点所确 ...

  5. 多线程编程 CreateThread(解释了TContext)

    function CreateThread( lpThreadAttributes: Pointer;           {安全设置} dwStackSize: DWORD;             ...

  6. UML类图几种”关系“的总结

    在UML类图中,常见的有以下几种关系: 泛化(Generalization)(继承),  实现(Realization)(接口实现),组合(Composition),聚合(Aggregation),关 ...

  7. Android framework召回(3)binder使用和IBinder BpRefbase IInterface INTERFACE 之间的关系

    status_t AudioSystem::setStreamVolumeIndex(audio_stream_type_t stream, int index, audio_devices_t de ...

  8. [LeetCode] Subsets [31]

    题目 Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must ...

  9. 简明Python3教程 3.介绍

    介绍 Python是少有的几种既强大又简单的编程语言.你将惊喜地发现通过使用Python即可轻松专注于解决问题而非和你所用的语言格式与结构. 下面是Python的官方介绍: Python is an ...

  10. WPF与缓动(三) 指数缓动

    原文:WPF与缓动(三) 指数缓动 WPF与缓动(三) 指数缓动                                                                     ...