Tags: ComputerVision

编译

  1. src/caffe/layers/contrastive_loss_layer.cpp:56:30: error: no matching function for call to ‘max(double, float)’

    Dtype dist = std::max(margin - sqrt(dist_sq_.cpu_data()[i]), Dtype(0.0));

Replace line 56 by this one :

Dtype dist = std::max(margin - (float)sqrt(dist_sq_.cpu_data()[i]), Dtype(0.0));

2. .build_release/lib/libcaffe.so: undefined reference to `cv::imread(cv::String const&, int)'

Change Makefile:

LIBRARIES += glog gflags protobuf leveldb snappy

lmdb boost_system hdf5_hl hdf5 m

opencv_core opencv_highgui opencv_imgproc

add :opencv_imgcodecs

数据处理

  1. median frequency balancing的计算

    图片分割经常会遇到class unbalance的情况,如果你的target是要求每个类别的accuracy 都很高那么在训练的时候做class balancing 很重要,如果你的target要求只要求图片总体的pixel accuracy好,那么class balancing 此时就不是很重要,因为占比小的class, accuray 虽然小,但是对总体的Pixel accuracy影响也较小。

    那么看下本文中的meidan frequency balancing是如何计算的:

    对于一个多类别图片数据库,每个类别都会有一个class frequency, 该类别像素数目除以数据库总像素数目, 求出所有class frequency 的median 值,除以该类别对应的frequency 得到weight:

\[weight_i = median(weights)/weight_i
\]

这样可以保证占比小的class, 权重大于1, 占比大的class, 权重小于1, 达到balancing的效果.

如对我自己的数据有两类分别为0,1, 一共55张500500训练图片,统计55张图片中0,1像素的个数:

count1 227611

count0 13522389

freq1 = 227611/(500
50055) = 0.0166

freq0 = 13522389/(500
500*55) = 0.9834

median = 0.5

weight1 = 30.12

weight0 = 0.508

  1. webdemo权重

    作者训练的webdemo和他给出的模型文件的类别数目和label 是对不上号的,因此可以使用webdemo跑测试,但是最好不要在上面finetune, 直接在VGG-16上面finetune 就行

  2. rgb label 转换为 gray label

一些数据集给出的label是rgb的,如下图,但是训练过程中输入网络的label一般是0 - class_num-1标记的label map, 因此需要一个转换过程,下面给出一个python2转换脚本:

#!/usr/bin/env python
import os
import numpy as np
from itertools import izip
from argparse import ArgumentParser
from collections import OrderedDict
from skimage.io import ImageCollection, imsave
from skimage.transform import resize camvid_colors = OrderedDict([
("Animal", np.array([64, 128, 64], dtype=np.uint8)),
("Archway", np.array([192, 0, 128], dtype=np.uint8)),
("Bicyclist", np.array([0, 128, 192], dtype=np.uint8)),
("Bridge", np.array([0, 128, 64], dtype=np.uint8)),
("Building", np.array([128, 0, 0], dtype=np.uint8)),
("Car", np.array([64, 0, 128], dtype=np.uint8)),
("CartLuggagePram", np.array([64, 0, 192], dtype=np.uint8)),
("Child", np.array([192, 128, 64], dtype=np.uint8)),
("Column_Pole", np.array([192, 192, 128], dtype=np.uint8)),
("Fence", np.array([64, 64, 128], dtype=np.uint8)),
("LaneMkgsDriv", np.array([128, 0, 192], dtype=np.uint8)),
("LaneMkgsNonDriv", np.array([192, 0, 64], dtype=np.uint8)),
("Misc_Text", np.array([128, 128, 64], dtype=np.uint8)),
("MotorcycleScooter", np.array([192, 0, 192], dtype=np.uint8)),
("OtherMoving", np.array([128, 64, 64], dtype=np.uint8)),
("ParkingBlock", np.array([64, 192, 128], dtype=np.uint8)),
("Pedestrian", np.array([64, 64, 0], dtype=np.uint8)),
("Road", np.array([128, 64, 128], dtype=np.uint8)),
("RoadShoulder", np.array([128, 128, 192], dtype=np.uint8)),
("Sidewalk", np.array([0, 0, 192], dtype=np.uint8)),
("SignSymbol", np.array([192, 128, 128], dtype=np.uint8)),
("Sky", np.array([128, 128, 128], dtype=np.uint8)),
("SUVPickupTruck", np.array([64, 128, 192], dtype=np.uint8)),
("TrafficCone", np.array([0, 0, 64], dtype=np.uint8)),
("TrafficLight", np.array([0, 64, 64], dtype=np.uint8)),
("Train", np.array([192, 64, 128], dtype=np.uint8)),
("Tree", np.array([128, 128, 0], dtype=np.uint8)),
("Truck_Bus", np.array([192, 128, 192], dtype=np.uint8)),
("Tunnel", np.array([64, 0, 64], dtype=np.uint8)),
("VegetationMisc", np.array([192, 192, 0], dtype=np.uint8)),
("Wall", np.array([64, 192, 0], dtype=np.uint8)),
("Void", np.array([0, 0, 0], dtype=np.uint8))
]) def convert_label_to_grayscale(im):
out = (np.ones(im.shape[:2]) * 255).astype(np.uint8)
for gray_val, (label, rgb) in enumerate(camvid_colors.items()):
match_pxls = np.where((im == np.asarray(rgb)).sum(-1) == 3)
out[match_pxls] = gray_val
assert (out != 255).all(), "rounding errors or missing classes in camvid_colors"
return out.astype(np.uint8) def make_parser():
parser = ArgumentParser()
parser.add_argument(
'label_dir',
help="Directory containing all RGB camvid label images as PNGs"
)
parser.add_argument(
'out_dir',
help="""Directory to save grayscale label images.
Output images have same basename as inputs so be careful not to
overwrite original RGB labels""")
return parser if __name__ == '__main__':
parser = make_parser()
args = parser.parse_args()
labs = ImageCollection(os.path.join(args.label_dir, "*"))
os.makedirs(args.out_dir)
for i, (inpath, im) in enumerate(izip(labs.files, labs)):
print(i + 1, "of", len(labs))
# resize to caffe-segnet input size and preserve label values
resized_im = (resize(im, (360, 480), order=0) * 255).astype(np.uint8)
out = convert_label_to_grayscale(resized_im)
outpath = os.path.join(args.out_dir, os.path.basename(inpath))
imsave(outpath, out)

训练结果

基于VGG-16finetune训练的一个模型迭代20000次的测试结果:



label:



基于VGG-16自己数据训练的结果:



label:

测试结果:

Reference

  1. Demystifying Segnet:http://5argon.info/portfolio/d/SegnetTrainingGuide.pdf

【Computer Vision】 复现分割网络(1)——SegNet的更多相关文章

  1. Graph Cut and Its Application in Computer Vision

    Graph Cut and Its Application in Computer Vision 原文出处: http://lincccc.blogspot.tw/2011/04/graph-cut- ...

  2. paper 156:专家主页汇总-计算机视觉-computer vision

    持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...

  3. 获取Avrix上Computer Vision and Pattern Recognition的论文,进一步进行统计分析。

    此文主要记录我在18年寒假期间,收集Avrix论文的总结 寒假生活题外   在寒假期间,爸妈每天让我每天跟着他们6点起床,一起吃早点收拾,每天7点也就都收拾差不多.   早晨的时光是人最清醒的时刻,而 ...

  4. inception_v2版本《Rethinking the Inception Architecture for Computer Vision》(转载)

    转载链接:https://www.jianshu.com/p/4e5b3e652639 Szegedy在2015年发表了论文Rethinking the Inception Architecture ...

  5. Rethinking the inception architecture for computer vision的 paper 相关知识

    这一篇论文很不错,也很有价值;它重新思考了googLeNet的网络结构--Inception architecture,在此基础上提出了新的改进方法; 文章的一个主导目的就是:充分有效地利用compu ...

  6. 【Semantic segmentation Overview】一文概览主要语义分割网络(转)

    文章来源:https://www.tinymind.cn/articles/410 本文来自 CSDN 网站,译者蓝三金 图像的语义分割是将输入图像中的每个像素分配一个语义类别,以得到像素化的密集分类 ...

  7. 如何创建Azure Face API和计算机视觉Computer Vision API

    在人工智能技术飞速发展的当前,利用技术手段实现人脸识别.图片识别已经不是什么难事.目前,百度.微软等云计算厂商均推出了人脸识别和计算机视觉的API,其优势在于不需要搭建本地环境,只需要通过网络交互,就 ...

  8. 【E2EL5】A Year in Computer Vision中关于图像增强系列部分

    http://www.themtank.org/a-year-in-computer-vision 部分中文翻译汇总:https://blog.csdn.net/chengyq116/article/ ...

  9. Computer vision labs

    积累记录一些视觉实验室,方便查找 1.  多伦多大学计算机科学系 2.  普林斯顿大学计算机视觉和机器人实验室 3.  牛津大学Torr Vision Group 4.  伯克利视觉和学习中心 Pro ...

随机推荐

  1. rabbitmq安装、集群搭建

    rabbitmq的安装: CentOS上面部署: 首先修改hosts文件 修改hosts文件vi /etc/hosts1.1.1.1 hostname 2.2.2.2 hostname 3.3.3.3 ...

  2. [Javascript Crocks] Recover from a Nothing with the `alt` method

    Once we’re using Maybes throughout our code, it stands to reason that at some point we’ll get a Mayb ...

  3. [Oracle]行列转换(行合并与拆分)

    使用wmsys.wm_concat 实现行合并 在 Oracle  中, 将某一个栏位的多行数据转换成使用逗号风格的一行显示.能够使用函数  wmsys.wm_concat 达成. 这个在上一篇 or ...

  4. Storm集群组件和编程模型

     Storm工作原理: Storm是一个开源的分布式实时计算系统,常被称为流式计算框架.什么是流式计算呢?通俗来讲,流式计算顾名思义:数据流源源不断的来,一边来,一边计算结果,再进入下一个流. 比 ...

  5. Linux命令(九)——系统监视和进程控制

    与windows系统一样,linux系统中也有很多进程在同时运行,每个进程都有一个识别码PID,它是进程的唯一识别标志. 一.进程的类型 1.系统进程 在操作系统启动后,系统环境平台运行所加载的进程, ...

  6. 学习 java netty (一) -- java nio

    前言:近期在研究java netty这个网络框架,第一篇先介绍java的nio. java nio在jdk1.4引入,事实上也算比較早的了.主要引入非堵塞io和io多路复用.内部基于reactor模式 ...

  7. 0x5C 数位统计DP

    怎么说,数位DP还是我的噩梦啊,细节太恐怖了. 但是这章感觉又和之前的学的数位DP有差异?(应该是用DP预处理降低时间复杂度,好劲啊,不过以前都是记忆化搜索的应该不会差多少) poj3208 f[i] ...

  8. [NOIP 2017] 奶酪

    [题目链接] http://uoj.ac/problem/332 [算法] 直接搜索即可 注意使用long long [代码] #include<bits/stdc++.h> using ...

  9. 纯JS监听document是否加载完成

    欢迎加入前端交流群交流知识&&获取视频资料:749539640 概述 一个document 的 Document.readyState 属性描述了文档的加载状态. 一个文档的 read ...

  10. NSKeyedUnarchiver归档

    把自定义的类对象编码到NSData中 NSData *data = [NSKeyedArchiver archivedDataWithRootObject:bc];//归档,bc是一个自定义的类对象, ...