Description

  在遥远的东方,有一个神秘的民族,自称Y族。他们世代居住在水面上,奉龙王为神。每逢重大庆典, Y族都
会在水面上举办盛大的祭祀活动。我们可以把Y族居住地水系看成一个由岔口和河道组成的网络。每条河道连接着
两个岔口,并且水在河道内按照一个固定的方向流动。显然,水系中不会有环流(下图描述一个环流的例子)。

  由于人数众多的原因,Y族的祭祀活动会在多个岔口上同时举行。出于对龙王的尊重,这些祭祀地点的选择必
须非常慎重。准确地说,Y族人认为,如果水流可以从一个祭祀点流到另外一个祭祀点,那么祭祀就会失去它神圣
的意义。族长希望在保持祭祀神圣性的基础上,选择尽可能多的祭祀的地点。

Input

第一行包含两个用空格隔开的整数N、M,分别表示岔口和河道的数目,岔口从1到N编号。
接下来M行,每行包含两个用空格隔开的整数u、v,
描述一条连接岔口u和岔口v的河道,水流方向为自u向v。
N≤100M≤1000

Output

第一行包含一个整数K,表示最多能选取的祭祀点的个数。

Code:

#include<bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 100000
#define inf 100000
#define nex 120
using namespace std;
struct Edge{
int from,to,cap;
Edge(int a=0,int b=0,int c=0):from(a),to(b),cap(c){}
};
queue<int>Q;
vector<Edge>edges;
vector<int>G[maxn];
void add(int u,int v,int c){
edges.push_back(Edge(u,v,c));
edges.push_back(Edge(v,u,0));
int m=edges.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
int S,T,vis[maxn],d[maxn],current[maxn];
int BFS(){
memset(vis,0,sizeof(vis));
vis[S]=1,d[S]=0; Q.push(S);
while(!Q.empty()){
int u=Q.front();Q.pop();
for(int sz=G[u].size(),i=0;i<sz;++i){
Edge r = edges[G[u][i]];
if(!vis[r.to] && r.cap>0) {
vis[r.to]=1,d[r.to]=d[u]+1;
Q.push(r.to);
}
}
}
return vis[T];
}
int dfs(int x,int cur){
if(x==T) return cur;
int flow=0,f;
for(int sz=G[x].size(),i=current[x];i<sz;++i){
current[x]=i;
Edge r = edges[G[x][i]];
if(d[r.to]==d[x]+1&&r.cap>0) {
if(f=dfs(r.to,min(cur,r.cap))) {
flow+=f,cur-=f;
edges[G[x][i]].cap-=f,edges[G[x][i]^1].cap+=f;
}
}
if(cur==0) break;
}
return flow;
}
int maxflow(){
int flow=0;
while(BFS()){
memset(current,0,sizeof(current));
flow+=dfs(S,inf);
}
return flow;
}
int ck[200][200];
int main(){
// setIO("input");
int n,m;
scanf("%d%d",&n,&m);
for(int i=1,a,b;i<=m;++i)
scanf("%d%d",&a,&b),ck[a][b]=1;
for(int i=1;i<=n;++i) ck[i][i]=1;
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j) if(i!=j && ck[i][k]&&ck[k][j]) ck[i][j]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j) if(i!=j&&ck[i][j]) add(i,j+nex,1);
S=0,T=400;
for(int i=1;i<=n;++i) add(S,i,1),add(i+nex,T,1);
printf("%d",n-maxflow());
return 0;
}

  

BZOJ1143: [CTSC2008]祭祀river 网络流_Floyd_最大独立集的更多相关文章

  1. BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】

    1143: [CTSC2008]祭祀river Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 3236  Solved: 1651 [Submit] ...

  2. bzoj1143: [CTSC2008]祭祀river && bzoj27182718: [Violet 4]毕业旅行

    其实我至今不懂为啥强联通缩点判入度会错... 然后这个求的和之前那道组合数学一样,就是最长反链=最小链覆盖=最大独立集. #include<cstdio> #include<iost ...

  3. BZOJ1143 [CTSC2008] 祭祀river

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题目大意: 给你n个点,点与点之间由有向边相连.如果u能到达v的话,那么他们就不能同 ...

  4. BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1143 题意概括 给出一个有向图.求最小链覆盖. 题解 首先说两个概念: 链:一条链是一些点的集合, ...

  5. bzoj1143: [CTSC2008]祭祀river 最长反链

    题意:在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河道连 ...

  6. [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)

    题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...

  7. [BZOJ1143][CTSC2008]祭祀river(最长反链)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...

  8. 2018.08.20 bzoj1143: [CTSC2008]祭祀river(最长反链)

    传送门 一道简单的求最长反链. 反链简单来说就是一个点集,里面任选两个点u,v都保证从u出发到不了v且v出发到不了u. 链简单来说就是一个点集,里面任选两个点u,v都保证从u出发可以到达v或者v出发可 ...

  9. 【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river

    Dilworth定理,将最长反链转化为最小链覆盖.//貌似还能把最长上升子序列转化为不上升子序列的个数? floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖.(引用:这样其实就是相 ...

随机推荐

  1. Windows 环境下使用 GCC

    安装 1.下载 min-gw 安装程序,链接为:http://sourceforge.net/projects/mingw/files/,下载 Download mingw-get-setup.exe ...

  2. 基于Mysql-Proxy 实现MariaDB 读写分离

    一.Mysql-Proxy 简单介绍 MySQL-Proxy是一个处于你的client端和MySQL server端之间的简单程序,它可以监测.分析或改变它们的通信.它使用灵活,没有限制,常见的用途包 ...

  3. APIO 2017 游记

    //第一次写游记,只是流水账...结果好像确实只去游了…… day-11 省选挂了,即将退役……(然而apio之后得知并没有退役,感谢放我一条活路)(吐槽出题人考完才造数据,题目没有子任务之类的玩意, ...

  4. 洛谷 P1198 BZOJ 1012 [JSOI2008]最大数

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  5. 汉澳sinox2014x64server已经能够下载

    大家快去下载,用迅雷快速下载 下载地址 ftp://sinox.3322.org/sinox2014x64server.img 已经能够下载 ftp://sinox.3322.org/sinox201 ...

  6. Cocos2d-x3.3beta0创建动画的3种方式

    1.单独载入精灵对象 渲染效率低,浪费资源,不推荐用该方法.代码例如以下:注:代码仅仅需贴到HelloWorldScene.cpp中就可以. //First,单独渲染每个精灵帧 auto sprite ...

  7. Spring+EhCache缓存实例(具体解说+源代码下载)

    一.ehcahe的介绍 EhCache 是一个纯Java的进程内缓存框架,具有高速.精干等特点,是Hibernate中默认的CacheProvider.Ehcache是一种广泛使用的开源Java分布式 ...

  8. (转)Android开发书籍推荐:从入门到精通系列学习路线书籍介绍

    Android开发书籍推荐:从入门到精通系列学习路线书籍介绍 转自:http://blog.csdn.net/findsafety/article/details/52317506 很多时候我们都会不 ...

  9. oracle表类似:BIN$dJ5h8mA4Lr/gQAB/AQB0oA==$0 TABLE

    今天看到数据库中有很多类似: TNAME                          TABTYPE  CLUSTERID ------------------------------ ---- ...

  10. python程序中用类变量代替global 定义全局变量

    在python编程中,一般使用global 关键字来定义全局变量,但是发现 global 关键字在涉及多个文件时,好像存在问题. 比如,单个文件下用global定义使用全局变量的情况 ,看下面的代码 ...