solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为

# caffe train --solver=*_slover.prototxt

在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。

到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

  • Stochastic Gradient Descent (type: "SGD"),
  • AdaDelta (type: "AdaDelta"),
  • Adaptive Gradient (type: "AdaGrad"),
  • Adam (type: "Adam"),
  • Nesterov’s Accelerated Gradient (type: "Nesterov") and
  • RMSprop (type: "RMSProp")

具体的每种方法的介绍,请看本系列的下一篇文章, 本文着重介绍solver配置文件的编写。

Solver的流程:

1.     设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)

2.     通过forward和backward迭代的进行优化来跟新参数。

3.     定期的评价测试网络。 (可设定多少次训练后,进行一次测试)

4.     在优化过程中显示模型和solver的状态

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的slover方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照,以及对应的状态。

接下来,我们先来看一个实例:

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU

接下来,我们对每一行进行详细解译:

net: "examples/mnist/lenet_train_test.prototxt"

设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考本系列文文章中的(2)-(5)。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。

也可用train_net和test_net来对训练模型和测试模型分别设定。例如:

train_net: "examples/hdf5_classification/logreg_auto_train.prototxt"
test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"

接下来第二行:

test_iter: 100

这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch

test_interval: 500

测试间隔。也就是每训练500次,才进行一次测试。

base_lr: 0.01
lr_policy: "inv"
gamma: 0.0001
power: 0.75

这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。

lr_policy可以设置为下面这些值,相应的学习率的计算为:

    • - fixed:   保持base_lr不变.
    • - step:    如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
    • - exp:     返回base_lr * gamma ^ iter, iter为当前迭代次数
    • - inv:      如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
    • - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据                                 stepvalue值变化
    • - poly:     学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
    • - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))

multistep示例:

base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500

接下来的参数:

momentum :0.9

上一次梯度更新的权重,具体可参看下一篇文章。

type: SGD

优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。

weight_decay: 0.0005

权重衰减项,防止过拟合的一个参数。

display: 100

每训练100次,在屏幕上显示一次。如果设置为0,则不显示。

max_iter: 20000

最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。

snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"

快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。

还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。

也可以设置snapshot_format,保存的类型。有两种选择:HDF5 和BINARYPROTO ,默认为BINARYPROTO

solver_mode: CPU

设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

原文见:http://www.cnblogs.com/denny402/p/5074049.html

solver及其配置的更多相关文章

  1. Caffe学习系列(7):solver及其配置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...

  2. caffe(7) solver及其配置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...

  3. 【深度学习】之Caffe的solver文件配置(转载自csdn)

    原文: http://blog.csdn.net/czp0322/article/details/52161759 今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是mode ...

  4. Caffe学习系列(8):solver及其配置

    solver是caffe的核心. net: "examples/mnist/lenet_train_test.prototxt" test_iter: 100 test_inter ...

  5. 【转】Caffe的solver文件配置

    http://blog.csdn.net/czp0322/article/details/52161759 solver.prototxt 今天在做FCN实验的时候,发现solver.prototxt ...

  6. caffe solver 配置详解

    caffe solver通过协调网络前向推理和反向梯度传播来进行模型优化,并通过权重参数更新来改善网络损失求解最优算法,而solver学习的任务被划分为:监督优化和参数更新,生成损失并计算梯度.caf ...

  7. Solver Of Caffe

    本文旨在解决如何编写solver文件. Solver的流程: 1.     设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络.(通过调用另外一个配置文件prototxt来进行) 2.  ...

  8. 深度学习笔记(六)finetune

    转自Caffe fine-tuning 微调网络 一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据.因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我 ...

  9. Caffe fine-tuning 微调网络

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 目前呢,caffe,theano,torch是当下比较流行的De ...

随机推荐

  1. Python基本语法(基于3.x)

    Python的两种运行模式: 命令行模式,运行python,然后在命令行中输入python命令 程序脚本, 在命令行中输入 ./hello.py运行 Python是解释形语言,但可以通过工具打包成二进 ...

  2. jquery动态表格,动态添加表格行

    转载收藏于:https://www.cnblogs.com/zhangqs008/archive/2013/05/09/3618459.html 效果图:   Html:<html> &l ...

  3. split(":")[0].substring(1)

    java中拆分字符中的split(":")[0].substring(1)是什么意思啊,尤其[0] 可以解释一下吗?:比如你有一个字符串 "111:222:333&quo ...

  4. 转:EL表达式

    简介: EL 全名为 Language ,JSP2.0 之后,EL 成为了标准规范.因此,只要是支持Servlet2.4/JSP2.0 的容器,就都可以在JSP 网页中直接使用EL . 除了JSP2. ...

  5. kindEditor编写插件遇到的问题

    kindEditor是一个功能强大的在线文本编辑器,而且提供了插件扩展功能,更好的满足用户各方面的需求.在项目中,我们就有如此的需求:在kindEditor编辑器中,添加一条下划线,并且在下划线的中间 ...

  6. ModelDriven机制及其运用

    ModelDriven 为什么需要ModelDriven 所谓ModelDriven ,意思是直接把实体类当成页面数据的收集对象.比如,有实体类User 如下: package cn.com.lead ...

  7. Caffe 激励层(Activation)分析

    Caffe_Activation 一般来说,激励层的输入输出尺寸一致,为非线性函数,完成非线性映射,从而能够拟合更为复杂的函数表达式激励层都派生于NeuronLayer: class XXXlayer ...

  8. HDU 5273 Dylans loves sequence【 树状数组 】

    题意:给出n个数,再给出q个询问,求L到R的逆序对的个数 先自己写的时候,是每次询问都重新插入来求sum(r)-sum(l) 果断T 后来还是看了别人的代码---- 预处理一下,把所有可能的区间的询问 ...

  9. gcd的queue与group

    queue相当于事件处理机制里的事件池:只是任务池: 线程作为事件处理的实施者,由线程池从任务池中获取任务进行调度派发: group相当与工作组,按照任务的相关性对任务进行组织.

  10. LA3231 Fair Share 二分_网络流

    Code: #include<cstdio> #include<vector> #include<queue> #include<cstring> #i ...