import pandas as pd
import numpy as np
s = pd.Series([1, 3, 6, np.nan, 44, 1]) df= pd.DataFrame(np.random.random((4,5))) # data frame 常用属性
df.dtypes
df.index
df.columns
df.values # data frame 常用方法
df.describe()
df.T
df.sort_index(axis = 1, ascending = False)
df.sort_values(by = 4) # 选择数据
dates = pd.date_range('', periods = 6)
df = pd.DataFrame(np.arange(24).reshape((6,4)), index = dates,
columns = ['A', 'B', 'C', 'D']) '''row or column''' # 行不可隔着选择
print(df[0:3])
print(df[['A', 'D']]) '''select by label:loc''' # 行不可隔着选择
print(df.loc['', :])
print(df.loc[:,['A', 'B']]) '''select by position:iloc'''
print(df.iloc[[0, 2], [0, 3]]) '''mixed selection:ix'''
print(df.ix[[0, 2], ['A', 'D']]) '''Boolean indexing'''
print(df[df.B > 5]) # 设置数据
df.iloc[2, 2] = 111
df.loc['', 'D'] = 222
df.B[df.A > 5] = 0
print(df) df['F'] = np.nan
df['E'] = range(6)
print(df) # 处理缺失数据
df.iloc[0, 1] = np.nan
df.iloc[1, 2] = np.nan
print(df)
print(df.dropna(axis = 0, how = 'all')) # how = {'any', 'all'}
print(df.fillna(value = 0))
print(np.any(df.isnull())) # data frame 合并
'''concatenating'''
df1 = pd.DataFrame(np.ones((3,4))*0, columns = ['a', 'b', 'c', 'd'])
df2 = pd.DataFrame(np.ones((3,4))*1, columns = ['a', 'b', 'c', 'd'])
df3 = pd.DataFrame(np.ones((3,4))*2, columns = ['a', 'b', 'c', 'd']) res = pd.concat([df1, df2, df3], axis = 0, ignore_index = True)
res1 = pd.concat([df1, df2, df3], axis = 1) '''join参数'''
df1 = pd.DataFrame(np.ones((3,4))*0, columns = ['a', 'b', 'c', 'd'], index = [1, 2, 3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns = ['b', 'c', 'd', 'e'], index = [2, 3, 4]) res = pd.concat([df1, df2], join = 'outer', ignore_index = True)
res = pd.concat([df1, df2], join = 'inner', ignore_index = True)
print(res) '''join_axes'''
res = pd.concat([df1, df2], axis = 1, join = 'inner')
res = pd.concat([df1, df2], axis = 1, join_axes = [df1.index]) # append
df1 = pd.DataFrame(np.ones((3,4))*0, columns = ['a', 'b', 'c', 'd'], index = [1, 2, 3])
df2 = pd.DataFrame(np.ones((3,4))*1, columns = ['b', 'c', 'd', 'e'], index = [2, 3, 4])
df3 = pd.DataFrame(np.ones((3,4))*1, columns = ['b', 'c', 'd', 'e'], index = [2, 3, 4]) res = df1.append([df2, df3], ignore_index = True)
res1 = pd.concat([df1, df2, df3])
print(res)
print(res1) # data frame merge
'''merge one key'''
left = pd.DataFrame({'key':['K1','K2','K3'],
'A':[1,2,3],
'B':[4,5,6]}) right = pd.DataFrame({'key':['K0','K1','K3'],
'A':[11,43,53],
'D':[12,-1,0]})
res = pd.merge(left, right, on = 'key', how = 'outer')
print(res) '''merge two or more keys'''
left = pd.DataFrame({'key0':['K1','K2','K3'],
'key1':['X0','X2','X3'],
'A':[1,2,3],
'B':[4,5,6]}) right = pd.DataFrame({'key0':['K0','K1','K3'],
'key1':['X1','X0','K3'],
'A':[11,43,53],
'D':[12,-1,0]})
res = pd.merge(left, right, on = ['key0', 'key1'], how = 'outer')
print(res) '''merge index'''
left = pd.DataFrame({'A':[1,2,3],
'B':[4,5,6]},
index = ['K0', 'K1', 'K2']) right = pd.DataFrame({'A':[11,43,53],
'D':[12,-1,0]},
index = ['K1', 'K2', 'K3'])
res = pd.merge(left, right, left_index = True,
right_index = True)
print(res) '''handle overlapping columns'''
left = pd.DataFrame({'key':['K1','K2','K3'],
'A':[1,2,3],
'B':[4,5,6]}) right = pd.DataFrame({'key':['K0','K1','K3'],
'A':[11,43,53],
'B':[12,-1,0]})
res = pd.merge(left, right, on = 'key',
suffixes = ['_left', '_right'] , how = 'outer')
print(res) # 作图
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt '''plot data'''
'''Series'''
data = pd.Series(np.random.randn(1000), index = np.arange(1000))
data = data.cumsum()
data.plot()
print(data) '''Data Frame'''
data = pd.DataFrame(np.random.randn(1000, 4),
index = np.arange(1000),
columns = list("ABCD"))
print(data.head())
data = data.cumsum()
data.plot()
ax = data.plot.scatter(x = 'A', y = 'C',
color = 'Red',
label = 'Class 2')
data.plot.scatter(x = 'A', y = 'B',
color = 'DarkGreen',
label = 'Class 2',
ax = ax)

Python:Pandas学习的更多相关文章

  1. Python pandas学习总结

    本来打算学习pandas模块,并写一个博客记录一下自己的学习,但是不知道怎么了,最近好像有点急功近利,就想把别人的东西复制过来,当心沉下来,自己自觉地将原本写满的pandas学习笔记删除了,这次打算写 ...

  2. [IT学习]Python pandas 学习

    今天学习pandas来处理数据,结果用python 3.5.0的shell来调试,总是报错. 报错中包含如下字样: Traceback (most recent call last): File &q ...

  3. Python pandas学习笔记

    参考文献:<Python金融大数据分析> #导入模块 import pandas as pd #生成dataframe df = pd.DataFrame([10,20,30,40], c ...

  4. python 数据处理学习pandas之DataFrame

    请原谅没有一次写完,本文是自己学习过程中的记录,完善pandas的学习知识,对于现有网上资料的缺少和利用python进行数据分析这本书部分知识的过时,只好以记录的形势来写这篇文章.最如果后续工作定下来 ...

  5. Python Pandas库的学习(二)

    今天我们继续讲下Python中一款数据分析很好的库.Pandas的学习 接着上回讲到的,如果有人听不懂,麻烦去翻阅一下我前面讲到的Pandas学习(一) 如果我们在数据中,想去3,4,5这几行数据,那 ...

  6. Python: NumPy, Pandas学习资料

    NumPy 学习资料 书籍 NumPy Cookbook_[Idris2012] NumPy Beginner's Guide,3rd_[Idris2015] Python数据分析基础教程:NumPy ...

  7. 用scikit-learn和pandas学习线性回归

    对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习 ...

  8. Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习

    http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...

  9. Python人工智能学习笔记

    Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...

  10. pandas学习笔记(一)

    Pandas是一款开放源码的BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Pandas用于广泛的领域,包括金融,经济,统计,分析等学术和商业领域.在 ...

随机推荐

  1. Linux核心设计依据(六)该块I/O一层

    块设备是能随机存取装置固定大小的数据表设备.如硬盘:字符设备(如串口和键盘)它是按照字符流进入有序进行.不同之处在于是否足够的随机存取数据--这时候,你可以随心所欲地从一个位置跳到访问设备和位置.复杂 ...

  2. 再议指针---------函数回调(qsort函数原理)

    我们是否能写一个这种函数: 能够对不论什么类型数据排序 不论什么人在使用该函数不须要改动该函数代码(即:用户能够不必看到函数源 码,仅仅会调用即可) 思考: 用户须要排序的数据的类型千变万化,可能是i ...

  3. Spring 4 MVC+Apache Tiles 3 Example

    In this post we will integrate Apache Tiles 3 with Spring MVC 4, using annotation-based configuratio ...

  4. Python logging模块无法正常输出日志

    废话少说,先上代码 File:logger.conf [formatters] keys=default [formatter_default] format=%(asctime)s - %(name ...

  5. Unable to find a single main class from the following candidates

    关于start-class,spring boot官方手册是这么说明的: The plugin rewrites your manifest, and in particular it manages ...

  6. VSCode 小鸡汤 第00期 —— 安装和入门

    简介 这将是一个新的系列,将会以 Visual Studio Code(后文都简称为 VSCode 啦)的操作,环境配置,插件介绍为主,为大家不定期的介绍 VSCode 的一些操作技巧,所以取名 VS ...

  7. Qt 的几个核心机制总结之 布局(QWidget可以设置setSizePolicy,而QSizePolicy有Fixed,minimum,maximum,preferred,expanding,ignore等7个属性,还可以横竖分开)

    1.Qt布局的作用 Qt的布局是通过布局管理器来实现的,布局管理器负责在父类窗口部件区域构建子窗口部件,使得放置在窗体中的每个窗口部件都有一个适合的大小和位置,并且能够随着应用程序本身的变化而变化从而 ...

  8. uwp - RichEditBox 解决设置字体样式后滚动条自动回滚顶部的问题

    原文:uwp - RichEditBox 解决设置字体样式后滚动条自动回滚顶部的问题 开发中碰到一个问题,当RichEditBox输入的文本达到一定行数的时候,滚动条此时位于底部,改变文本样式(如字体 ...

  9. DDD实战6 单元测试

    1.在Products解决方案文件夹下面新建一个项目 一个单元测试项目 Product.Tests.

  10. 制作WPF时钟之2

    原文:制作WPF时钟之2 前段时间写了一篇"制作简单的WPF时钟",今天再制作了一个更漂亮的WPF时钟,目前仅完成了设计部分,准备将它制作成一个无边框窗体式的时钟. 效果图:   ...