链接:http://poj.org/problem?id=1966

题意:一个无向图,n个点,m条边,求此图的顶点连通度。

思路:顶点连通度,即最小割点集里的割点数目。一般求无向图顶点连通度的方法是转化为网络流的最小割。

建图:

(1)原图每一个点i拆点,拆为i‘和i’‘,i’到i‘’连一条弧容量为1。

(2)对于原图中存在的边(u, v),连两条弧(u‘, v')和(v'', u'),容量INF。

(3)找一个源点i。这个点不能和其它全部点都相邻否则无法找到最小割,以这个点i''为源点,枚举汇点j'。

图建好了之后求n-1遍最大流。答案最小的那个就是此图的顶点连通度,i'到i''满流的i点组成了最小割点集。

#include<cstring>
#include<string>
#include<fstream>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<stack>
#include<ctime>
#include<cstdlib>
#include<functional>
#include<cmath>
using namespace std;
#define PI acos(-1.0)
#define MAXN 1010
#define eps 1e-7
#define INF 0x3F3F3F3F //0x7FFFFFFF
#define LLINF 0x7FFFFFFFFFFFFFFF
#define seed 1313131
#define MOD 1000000007
#define ll long long
#define ull unsigned ll
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1 struct node{
int u,v,w,next;
}edge[500000],edge2[500000];
int head[120],dist[120],cur[120],fa[120],num[120],vis[120];
int n,m,k,cnt,nn,src,sink;
void add_edge(int a,int b,int c){
edge2[cnt].u = a;
edge2[cnt].v = b;
edge2[cnt].w = c;
edge2[cnt].next = head[a];
head[a] = cnt++;
}
void bfs()
{
int x,i,j;
queue<int> q;
memset(dist,-1,sizeof(dist));
memset(num,0,sizeof(num));
q.push(sink);
dist[sink] = 0;
num[0] = 1;
while(!q.empty()){
x = q.front();
q.pop();
for(i=head[x];i!=-1;i=edge[i].next){
if(dist[edge[i].v]<0){
dist[edge[i].v] = dist[x] + 1;
num[dist[edge[i].v]]++;
q.push(edge[i].v);
}
}
}
} int augment()
{
int x=sink,a=INF;
while(x!=src){
a = min(a,edge[fa[x]].w);
x = edge[fa[x]].u;
}
x=sink;
while(x!=src){
edge[fa[x]].w -= a;
edge[fa[x]^1].w += a;
x = edge[fa[x]].u;
}
return a;
} int isap()
{
int i,x,ok,minm,flow=0;
bfs();
for(i=0;i<=nn+5;i++) cur[i] = head[i];
x=src;
while(dist[src]<nn){
if(x==sink){
flow += augment();
x = src;
}
ok=0;
for(i=cur[x];i!=-1;i=edge[i].next){
if(edge[i].w && dist[x]==dist[edge[i].v]+1){
ok=1;
fa[edge[i].v] = i;
cur[x] = i;
x = edge[i].v;
break;
}
}
if(!ok){
minm = nn;
for(i=head[x];i!=-1;i=edge[i].next)
if(edge[i].w && dist[edge[i].v]<minm) minm=dist[edge[i].v];
if(--num[dist[x]]==0)break;
num[dist[x]=minm+1]++;
cur[x]=head[x];
if(x!=src) x=edge[fa[x]].u;
}
}
return flow;
}
int main(){
int i,j;
int a,b;
while(scanf("%d%d",&n,&m)!=EOF){
memset(head,-1,sizeof(head));
cnt = 0;
for(i=0;i<n;i++){
add_edge(i,i+n,1);
add_edge(i+n,i,0);
}
for(i=0;i<m;i++){
scanf(" (%d,%d)",&a,&b);
add_edge(a+n,b,INF);
add_edge(b,a+n,0);
add_edge(b+n,a,INF);
add_edge(a,b+n,0);
}
int ans = INF;
nn = n * 2;
for(i=0;i<n;i++){
memset(vis,0,sizeof(vis));
for(j=head[i];j!=-1;j=edge2[j].next){
vis[edge2[j].v] = 1;
}
int sum = 0;
for(j=0;j<n;j++){
if(vis[j]) sum++;
}
if(sum < n - 1){
src = i + n;
break;
}
}
for(i=1;i<n;i++){
sink = i;
memcpy(edge,edge2,sizeof(node)*cnt);
int temp = isap();
ans = min(ans, temp);
}
if(ans == INF) ans = n;
printf("%d\n",ans);
}
return 0;
}

POJ--1966--Cable TV Network【无向图顶点连通度】的更多相关文章

  1. POJ 1966 Cable TV Network(顶点连通度的求解)

                               Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  2. POJ 1966 Cable TV Network (无向图点连通度)

    [题意]给出一个由n个点,m条边组成的无向图.求最少去掉多少点才能使得图中存在两点,它们之间不连通. [思路]回想一下s->t的最小点割,就是去掉多少个点能使得s.t不连通.那么求点连通度就枚举 ...

  3. POJ 1966 Cable TV Network

    Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4702   Accepted: 2173 ...

  4. POJ 1966 Cable TV NETWORK(网络流-最小点割集)

                                    Cable TV NETWORK The interconnection of the relays in a cable TV net ...

  5. poj 1966 Cable TV Network 顶点连通度

    题目链接 给一个图, n个点m条边, 求至少去掉多少个点可以使得图不再联通.随便指定一个点为源点, 枚举其他点为汇点的情况, 跑网络流, 求其中最小的情况. 如果最后ans为inf, 说明是一个完全图 ...

  6. POJ 1966 Cable TV Network (点连通度)【最小割】

    <题目链接> 题目大意: 给定一个无向图,求点连通度,即最少去掉多少个点使得图不连通. 解题分析: 解决点连通度和边连通度的一类方法总结见   >>> 本题是求点连通度, ...

  7. POJ 1966 Cable TV Network (算竞进阶习题)

    拆点+网络流 拆点建图应该是很常见的套路了..一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么. 所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t ...

  8. POJ 1966 Cable TV Network 【经典最小割问题】

    Description n个点的无向图,问最少删掉几个点,使得图不连通 n<=50 m也许可以到完全图? Solution 最少,割点,不连通,可以想到最小割. 发现,图不连通,必然存在两个点不 ...

  9. POJ - 1966 Cable TV Network (最大流求点连通度)

    题意:求一个无向图的点连通度.点联通度是指,一张图最少删掉几个点使该图不连通:若本身是非连通图,则点连通度为0. 分析:无向图的点连通度可以转化为最大流解决.方法是:1.任意选择一个点作为源点:2.枚 ...

  10. POJ 1966 Cable TV Network (最大流最小割)

    $ POJ~1966~Cable~TV~Network $ $ solution: $ 第一眼可能让人很难下手,但本就是冲着网络流来的,所以我们直接一点.这道题我们要让这个联通图断开,那么势必会有两个 ...

随机推荐

  1. 启用Maven的代理访问

    1. Maven配置文件 找到文件 {M2_HOME}/conf/settings.xml, 并把你的代理服务器信息配置写入.注:{M2_HOME} => D:\software\yiibai. ...

  2. web.xml中Filter过滤器标签说明

    原文:http://www.cnblogs.com/edwardlauxh/archive/2010/03/11/1918618.html 在研究liferay框架中看到Web.xml中加入了过滤器的 ...

  3. 【Codeforces Round #482 (Div. 2) B】Treasure Hunt

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 我们考虑每个字符串中出现最多的字母出现的次数cnt[3] 对于这3个cnt的值. 如果cnt+n<=s[i].size 那么显 ...

  4. java源码之HashMap和HashTable的异同

    代码版本 JDK每一版本都在改进.本文讨论的HashMap和HashTable基于JDK 1.7.0_67 1. 时间 HashTable产生于JDK 1.1,而HashMap产生于JDK 1.2.从 ...

  5. PatentTips – Java native function calling

    BACKGROUND OF INVENTION This invention relates to a system and method for providing a native functio ...

  6. fedora linux源代码下载

    yumdownloader --source kernel 如果是下载insight 就是 yumdownloader --source insight 下载到的是当前目录. 然后在用rpm2cpio ...

  7. github上Devstack的一些变动,截至8.20

    从github下直接clone下来的代码在执行之前须要对一些文件进行改动,否则会出现关于REQUIREMENTS的错误 说明:代码前边是"-"号的,须要删除,代码前边是" ...

  8. hdu 2604 Queuing (矩阵高速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  9. android:异步任务asyncTask介绍及异步任务下载图片(带进度条)

    为什么要用异步任务? 在android中仅仅有在主线程才干对ui进行更新操作.而其他线程不能直接对ui进行操作 android本身是一个多线程的操作系统,我们不能把全部的操作都放在主线程中操作 .比方 ...

  10. hiho 1571 - 贪心好题*

    题目链接 小Hi在帮助钢铁侠开发新的盔甲.这套新盔甲一共包含M种武器插槽,其中第i种插槽有Ci个.每个插槽最多安装一个武器模块. 小Hi一共准备了N个武器模块,编号1~N.每个武器模块都有三个参数Vi ...