POJ1180 Batch Scheduling 解题报告(斜率优化)
题目链接:http://poj.org/problem?id=1180
题目描述:
A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.
You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.
Input
Output
Sample Input
5
1
1 3
3 2
4 3
2 3
1 4
Sample Output
153
Source
#include<bits/stdc++.h>
#define ll long long
using namespace std; const int maxn=1e4+;
int n,s;
int sumt[maxn],sumc[maxn],q[maxn];
ll f[maxn];
int main()
{
scanf("%d%d",&n,&s);
for (int i=;i<=n;i++)
{
int t,c;
scanf("%d%d",&t,&c);
sumt[i]=sumt[i-]+t;
sumc[i]=sumc[i-]+c;
}
int l=,r=;
for (int i=;i<=n;i++)
{
while (l<r&&(f[q[l+]]-f[q[l]])<=(s+sumt[i])*(sumc[q[l+]]-sumc[q[l]])) l++;
f[i]=f[q[l]]-(s+sumt[i])*sumc[q[l]]+sumt[i]*sumc[i]+s*sumc[n];
while (l<r&&(f[q[r]]-f[q[r-]])*(sumc[i]-sumc[q[r]])>=(f[i]-f[q[r]])*(sumc[q[r]]-sumc[q[r-]])) r--;
q[++r]=i;
}
printf("%lld",f[n]);
return ;
}
声明:本博客内容参考李煜东算法竞赛进阶指南
POJ1180 Batch Scheduling 解题报告(斜率优化)的更多相关文章
- [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP
POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...
- POJ-1180 Batch Scheduling (分组求最优值+斜率优化)
题目大意:有n个任务,已知做每件任务所需的时间,并且每件任务都对应一个系数fi.现在,要将这n个任务分成若干个连续的组,每分成一个组的代价是完成这组任务所需的总时间加上一个常数S后再乘以这个区间的系数 ...
- POJ1180 Batch Scheduling -斜率优化DP
题解 将费用提前计算可以得到状态转移方程: $F_i = \min(F_j + sumT_i * (sumC_i - sumC_j) + S \times (sumC_N - sumC_j)$ 把方程 ...
- poj1180 Batch Scheduling
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3590 Accepted: 1654 Description There ...
- 【LeetCode】1029. Two City Scheduling 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 小根堆 排序 日期 题目地址:https://lee ...
- P2365 任务安排 / [FJOI2019]batch(斜率优化dp)
P2365 任务安排 batch:$n<=10000$ 斜率优化入门题 $n^{3}$的dp轻松写出 但是枚举这个分成多少段很不方便 我们利用费用提前的思想,提前把这个烦人的$S$在后面的贡献先 ...
- LeetCode :1.两数之和 解题报告及算法优化思路
最近开始重拾算法,在 LeetCode上刷题.顺便也记录下解题报告以及优化思路. 题目链接:1.两数之和 题意 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 ...
- poj 1180 Batch Scheduling (斜率优化)
Batch Scheduling \(solution:\) 这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 \(catstransport\) 的题解了,但还是来回顾一下吧,这道题其实较那 ...
- POJ 1180 Batch Scheduling(斜率优化DP)
[题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...
随机推荐
- 基于redis ae实现 Linux中的文件系统监控机制(inotify)
(英文部分为转的.代码是个人代码) 1 What's inotify The inotify API provides a mechanism for monitoring file system ...
- Java面试中常问的数据库方面问题
MySQL 为什么用自增列作为主键 如果我们定义了主键(PRIMARY KEY),那么InnoDB会选择主键作为聚集索引.如果没有显式定义主键,则InnoDB会选择第一个不包含有NULL值的唯一索引作 ...
- bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)
2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...
- zzulioj--1633--Happy Thanksgiving Day - Hateable Name(字符串筛选)
1633: Happy Thanksgiving Day - Hateable Name Time Limit: 1 Sec Memory Limit: 128 MB Submit: 75 ...
- [JZOJ NOIP2018模拟10.19]
T1写炸了今天,期望70却落了个20...连链上的都没有写对 T3什么什么线段树分治套AC自动机,表示我完全自闭了,幸好考场上没有杠T3 总体比赛还是比较舒服,暴力分给的蛮足的,不像昨天那样 T1:林 ...
- CreateProcess
#include <Windows.h> //WINBASEAPI //BOOL //WINAPI //CreateProcessW( //_In_opt_ LPCWSTR lpAppli ...
- Creating a Custom Page Layout in SharePoint 2013
Creating a Custom Page Layout in SharePoint 2013 In my last article, I documented how to create a Ma ...
- 51nod 1562 玻璃切割 (STL map+一点点的思考)
1562 玻璃切割 题目来源: CodeForces 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 现在有一块玻璃,是长方形的(w 毫米× h 毫米),现在要 ...
- C# HttpHelper万能框架实现 接口
POST请请求是使用Http协议与请求的URL进行连接,然后再写入数据,最后关闭连接的过程 方法(1) //要Post的数据 string postdate = "a=123&c=4 ...
- appium ios端自动化测试配置
一.安装环境介绍macOS 10.12.4 Xcode 8.3.2 适用机型:iOS9 及以上机型 二.Appium源码安装Xcode升级8.2之后不再支持UIAutomation,转而使用XCUIT ...