Intersection between a 2d line and a conic in OpenCASCADE
Intersection between a 2d line and a conic in OpenCASCADE
Abstract. OpenCASCADE provides the algorithm to implementation of the analytical intersection between a 2d line and another conic curve. The conic is defined by its implicit quadaratic equation, so the intersection problem is become a polynomial roots finding problem. The paper focus on the 2d line intersection another conic algorithm implementation.
Key Words. 2d line intersection, conic
1.Introduction
高中的时候学习了直线Line、圆Circle、圆锥曲线Conic(椭圆Ellipse、双曲线Hyperbola和抛物线parabola)等二维曲线的方程及特性,也可以对他们之间的相交情况进行计算。如何编程实现直线与任意圆锥曲线相交呢?本文通过对OpenCASCADE中二维直线与圆锥曲线相交代码的分析来理解其实现原理。
Figure 1. 直线与圆锥曲线相交
对于二维曲线知识的学习又把思绪拉回到高中年代,翻开泛黄的课本,遥想那个青涩时候,对于《数学》的学习也是停留在解题上,没有理解,更别说应用了。有人说数学、英语和代码是当今的世界语言,都可以进行思想的交流。数学本来就是描述现实世界规律的精妙语言,但我终究是个俗人,更崇拜能应用数学创建价值的人,如OpenCASCADE的开发者们。
2.Conic Implicit Equation
圆锥曲线一般的代数表示方法为:
OpenCASCADE中使用类IntAna2d_Conic来表示圆锥曲线的代数方程。并提供了将二维曲线(直线、圆、椭圆、抛物线、双曲线)转换成代数方程的方法,相关代码如下所示:
Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/
-->IntAna2d_Conic::IntAna2d_Conic (const gp_Lin2d& L) {
a = 0.0;
b = 0.0;
c = 0.0;
L.Coefficients(d,e,f);
f = 2*f;
}
IntAna2d_Conic::IntAna2d_Conic (const gp_Circ2d& C) {
C.Coefficients(a,b,c,d,e,f);
}
IntAna2d_Conic::IntAna2d_Conic (const gp_Elips2d& E) {
E.Coefficients(a,b,c,d,e,f);
}
IntAna2d_Conic::IntAna2d_Conic (const gp_Parab2d& P) {
P.Coefficients(a,b,c,d,e,f);
}
IntAna2d_Conic::IntAna2d_Conic (const gp_Hypr2d& H) {
H.Coefficients(a,b,c,d,e,f);
}
3.Intersection Implementation
当对直线和圆锥曲线进行求交时,先得到了直线的一般式方程和圆锥曲线的一般式方程,将它们联立成方程组如下所示:
是一个二元二次方程组。通过直线的参数表示法,将上述二元二次方程组转换成一元二次方程,再对这个方程进行求解。设直线l经过点P0(x0,y0),v=(a, b)是它的一个方向向量。P(x,y)是直线上任意一点,则向量P0P与v共线。根据向量共线的充要条件,存在唯一实数t,使:
将直线的一般式化为参数式为:
将直线的参数式代入圆锥曲线的一般式得到:
整理上述方程得:
得到各次系数后,就可以用Newton法来解这个一元二次方程了。OpenCASCADE中的实现代码如下所示:
Code highlighting produced by Actipro CodeHighlighter (freeware)
http://www.CodeHighlighter.com/
-->void IntAna2d_AnaIntersection::Perform (const gp_Lin2d& L,
const IntAna2d_Conic& Conic)
{
Standard_Real A,B,C,D,E,F;
Standard_Real px0,px1,px2;
Standard_Real DR_A,DR_B,DR_C,X0,Y0;
Standard_Integer i;
Standard_Real tx,ty,S;
done = Standard_False;
nbp = 0;
para = Standard_False;
iden = Standard_False;
Conic.Coefficients(A,B,C,D,E,F);
L.Coefficients(DR_A,DR_B,DR_C);
X0=L.Location().X();
Y0=L.Location().Y();
// Parametre: L
// X = Xo - L DR_B et Y = Yo + L DR_A
px0=F + X0*(D+D + A*X0 + 2.0*C*Y0) + Y0*(E+E + B*Y0);
px1=2.0*(E*DR_A - D*DR_B + X0*(C*DR_A - A*DR_B) + Y0*(B*DR_A - C*DR_B));
px2=DR_A*(B*DR_A - 2.0*C*DR_B) + A*(DR_B*DR_B);
MyDirectPolynomialRoots Sol(px2,px1,px0);
if(!Sol.IsDone()) {
done=Standard_False;
return;
}
else {
if(Sol.InfiniteRoots()) {
iden=Standard_True;
done=Standard_True;
return;
}
nbp=Sol.NbSolutions();
for(i=1;i<=nbp;i++) {
S=Sol.Value(i);
tx=X0 - S*DR_B;
ty=Y0 + S*DR_A;
lpnt[i-1].SetValue(tx,ty,S);
}
Traitement_Points_Confondus(nbp,lpnt);
}
done=Standard_True;
}
从上述源码可知,OpenCASCADE使用了直线的参数式来将直线与圆锥曲线的求交表示成一元二次方程,再使用Newton法来对方程进行求解。 其中变量px0、px1、px2分别表示一元二次方程的零次、一次和二次项的系数。
4.Conclusion
通过圆锥曲线的一般式和直线的参数式将直线与圆锥曲线相交问题变成一个一元二次方程的求根问题,再通过方程求根的Newton法来对一元二次方程进行求解。
5.References
1. 人民教育出版社中学数学室. 数学第二册上. 人民教育出版社. 2000
2. 易大义, 沈云宝, 李有法. 计算方法. 浙江大学出版社. 2002
3. 李原, 张开富, 余剑峰. 计算机辅助几何设计技术及应用. 西北工业大学出版社. 2007
4. 丘维声. 解析几何. 北京大学出版社. 1996
Intersection between a 2d line and a conic in OpenCASCADE的更多相关文章
- Intersection between 2d conic in OpenCASCADE
Intersection between 2d conic in OpenCASCADE eryar@163.com Abstract. OpenCASCADE provides the algori ...
- Two analytical 2d line intersection in OpenCASCADE
Two analytical 2d line intersection in OpenCASCADE eryar@163.com Abstract. OpenCASCADE geometric too ...
- OpenCASCADE Conic to BSpline Curves-Hyperbola
OpenCASCADE Conic to BSpline Curves-Hyperbola eryar@163.com Abstract. Rational Bezier Curve can repr ...
- codeforces D. Area of Two Circles' Intersection 计算几何
D. Area of Two Circles' Intersection time limit per test 2 seconds memory limit per test 256 megabyt ...
- <<Python基础教程>>学习笔记 | 第10章 | 充电时刻
第10章 | 充电时刻 本章主要介绍模块及其工作机制 ------ 模块 >>> import math >>> math.sin(0) 0.0 模块是程序 一个简 ...
- 【UE4 C++】UKismetMathLibrary 源代码
// Copyright Epic Games, Inc. All Rights Reserved. #pragma once #include "CoreMinimal.h" # ...
- [第四篇] PostGIS:“我让PG更完美!”
概要 本篇文章主要分为几何图形处理函数.仿生变换函数.聚类函数.边界分析函数.线性参考函数.轨迹函数.SFCGAL 函数.版本函数这八部分. Geometry Processing ST_Buffer ...
- PADS Layout 颜色设置
一.板框.装配线.标注线配置: 二.个人爱好,我一般把Top pads设置成为浅绿色,Top Trace/vias/2D Line/Text/Cooper设置成为深绿色,Error设置成为黄色,而Bo ...
- 数据可视化(1)--Chart.js
Chart.js是一个HTML5图表库,使用canvas元素来展示各式各样的客户端图表,支持折线图.柱形图.雷达图.饼图.环形图等.在每种图表中,还包含了大量的自定义选项,包括动画展示形式. Char ...
随机推荐
- MDNS DDoS 反射放大攻击——攻击者假冒被攻击者IP向网络发送DNS请求,域名为“_services._dns-sd._udp.local”,这将引起本地网络中所有提供服务的主机都向被攻击者IP发送DNS响应,列举网络中所有服务
MDNS Reflection DDoS 2015年3月,有报告叙述了mDNS 成为反射式和放大式 DDoS 攻击中所用媒介的可能性,并详述了 mDNS 反射式攻击的原理和相应防御方式.Q3,Akam ...
- [-] Failed to load plugin from /usr/share/metasploit-framework/plugins/db_autopwn: No classes were loaded from /usr/share/metasploit-framework/plugins/db_autopwn in the Msf::Plugin namespace.
问题详情 然后,执行,出现如下问题,则说明大家的这个文件,下载不是完整的或者你上传不完整. msf > load db_autopwn [-] Failed to load plugin fro ...
- ubuntu16.04下snort的安装(官方文档安装)(图文详解)
不多说,直接上干货! 最近为了科研,需要安装和使用Snort. snort的官网 https://www.snort.org/ Snort作为一款优秀的开源主机入侵检测系统,在windows和Linu ...
- SSRS 报表 如何匿名查看
SSRS 报表 如何匿名查看 昨晚一直研究怎么能匿名访问报表然后给客户看呢? 研究了好几种办法 我试过的分为三种,其中推荐我认为相对可控一点. .修改SSRS配置文件来禁止他验证登陆用户权限 操作过的 ...
- 使用Java操作Redis(一)
Redis是一款基于key-value的数据库服务器,安装完成后我们可以通过redis-cli使用Redis提供的命令完成各种操作.redis-cli实际上就是一款客户端,和redis-server建 ...
- vue-router路由配置
转自http://www.cnblogs.com/padding1015/ 两种配置方法:在main.js中 || 在src/router文件夹下的index.js中 src/router/index ...
- [HAOI2006]旅行(并查集)
寒假填坑五十道省选题——第五道 [HAOI2006]旅行 题目描述 Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光.Z小镇附近共有N个景点(编号为1,2,3,…,N),这些景点被M条道路 ...
- 用JS中的cookie实现商品的浏览记录
最近在做一个购物车效果,为了实现商品的浏览记录效果可是让我百般周折,避免以后忘记特写此随笔与大家共享,希望博友们看后有所收获. 第一步:在一个公用的js文件下getCookie(“liulan”),c ...
- CMSIS-RTOS 时间管理之虚拟定时器Virtual Timers
虚拟定时器Virtual Timers CMSIS-RTOS API里有几个向下计数的虚拟定时器,它们实现计数完成时用户的回调功能.每个定时器都可以配置成单次计数或重复计数模式,它们可以在定义定时器结 ...
- 洛谷 P1898 缘分计算
P1898 缘分计算 题目描述 缘分是一个外国人难以理解的中文名词.大致说来,缘分是一种冥冥中将两人(通常是情人)结合的力量.仅管这是种迷信,很多人——特别是女生——喜欢去计算它. 不幸的是,644 ...