题目例如以下:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArwAAAE+CAYAAABvKsMNAAAgAElEQVR4Ae2dz3XjOrflN3vdBCqD7hHBCNrjToBQR6DB94Y9egPyZUCNvw5AGRAadA6VAaEkqkJArwMQJEiRkmxLlixvreUr/gEODn6gb20fHgCZc86Bn4cS+Pv3L379+vVQH9g4CZAACZAACZAACbwqgf/2qh1jv0iABEiABEiABEiABEhACFDw8jkgARIgARIgARIgARJ4aQIUvC89vOwcCZAACZAACZAACZAABS+fARIgARIgARIgARIggZcmQMH70sPLzpEACZAACZAACZAACVDw8hkgARIgARIgARIgARJ4aQIUvC89vOwcCZAACZAACZAACZAABS+fARIgARIgARIgARIggZcmQMH70sPLzpEACZAACZAACZAACVDwPu0zYFErhdqeOmh0hkyb0xsAbK2QZdlVP2owbqAzjdSi2DlpwujVdqfOiL0lH6ZtTOvwjARIgARIgARIgATuQ4CC9z5c72pVNxXyw34iUCcNli1kx+j1nw5VntbQMC2wSUSvahpgkwpuA72xqBqdVDwVtqNIzlF1iQ9dhUmTiRUekgAJkAAJkAAJkMA9CVDw3pPuzWzPhGWxwxEHbJIo6hit/WCj2qCrLOoh6qvRVIDZS4hZos0boLVo1Nz+KGzbcn6P5yRAAiRAAiRAAiTweAL/PN4FejAnIOkExe4YLhcZdnmFzjlsdYb91sEMQVYRwjVUtyRE51Yvn6vGwmdQSOrC5tBXKJDt+sNNhkwOJYI8OrFi+Iid+D65S0U8wcETEiABEiABEiCBLyHACO+XYH5fIyI8nZO0gz56ahtIYFWbDqqOaQbnoq7va2+xdC+y52kR3TQXAkAQtpI3PGhkb3CM/HobTGlYxMyLJEACJEACJEAC9ydAwXt/xp9uYZyIVmB3jAJTjoGDRF0ltUHVITr77tZEOH/GxihsmdLwbvisQAIkQAIkQAIk8AUEKHi/APLHmwjitn6TiG8/AcyryhJtPI/ffRT4/W0pNNbBzdXqcYciyRGOKz8MqRbnGrK/Pyi+zxnlPRIgARIgARIgARL4GAEK3o9xu2stv+xYJhHcED3d7pMlvnzewHTCmhej4/IIt/FNUhpEBPvUhrCqQ9k6nKY0rDUXI9G9736i3VpZXicBEiABEiABEiCB+xGg4L0f2w9b1kaiuePSYeP5mD7gI76DIHVXTCK71h2L+vcWzjbAbwuoN58/HGv7/OLJhLVR2MYcXrs3OM5zgJnDGxHymwRIgARIgARI4IsJUPB+MfCPNmdrPebvSjTXr6QgK4WFCW0ftTutJ/m8BeybLANhsTdHlNthSYix6GQDiqkIN6qG3h1RNrf0a2yaRyRAAiRAAiRAAiTwXgJcluy9xB5U3kdWG7+VGlSxQdavGibr5ur54riHDTK/fth5Z082gjgegNZBRKvKdjjK8mMLetdK5Nd/NMykgIGW1IWyhV2od94b3iUBEiABEiABEiCB+xBghPc+XD9lNazKIDm8Cm8qWUVBJpFpwMSJas7BQPtVGiYbT7x7pzVARGxedcFesYNq0zQJha3OhxUhZOLaUuTX6A0OkzV6kw0zvBDegjr4U48GK5MACZAACZAACXyAQOYkGZSfhxL4+/cvfv369VAf2DgJkAAJkAAJkAAJvCoBRnhfdWTZLxIgARIgARIgARIgAU+AgpcPAgmQAAmQAAmQAAmQwEsToOB96eFl50iABEiABEiABEiABCh4+QyQAAmQAAmQAAmQAAm8NAEK3pceXnaOBEiABEiABEiABEiAgpfPAAmQAAmQAAmQAAmQwEsToOB96eFl50iABEiABEiABEiABCh4n/UZkO17ZaOJa39ku2HZNmK1vIbx9xVq2SjN1lCqRtwz7Vkx0C8SIAESIAESIAES+CwBCt7PErxn/bxCl+yq5lyLEiXayTUH2TvEGdnDTLb6deiq3O+aJtflGH7nNdmTjR8SIAESIAESIAES+HkEKHi/wZgbHSO9GxxwwGYexfXR3W/QEbpIAiRAAiRAAiRAAg8gQMH7AOgfabJs+0juLLrrI7i9wSiMi90Rx13h0yHkGIeNP1b173c0bVGrDBnTHt7BjEVJgARIgARIgASekQAF7zOOyoJPh02M8k6/vaDty2sjorhDyGIIAnlMaXCwzduCZV4iARIgARIgARIggdcmQMH7zOOr3qB6/66J8PqipsYOFZrFhF3J8bVootGzfVdorIOzzeDD2eK8SQIkQAIkQAIkQAJPSuCfJ/WLbs0I+Ajv7NpwWvZHsvLCBmjduki1tcIQFS5bitkBIg9IgARIgARIgARelQAjvE86svb3dMGwMcI7XakhzeGFamDddDUG1Vh0qobya5EBcu5XdRhWdnhSAHSLBEiABEiABEiABG5EgIL3RiBvbcbaI3IVcg+06aDqfv3coSGZVKaw39p+SbL+xsL6vekktnRd3yiCB5M8IAESIAESIAESIIEXJEDB+5SDavHb5tDbIHhtrbFTzSz3VqExGqaYCWFtxghuv6KDRIHzqju5bs8m83KVhqd8NOgUCZAACZAACZDAuwkwh/fdyL6ggp94ptEp2RBNcm4VWtfPQrO/x93RJIWhA1ShgO7ayWhf4D+bIAESIAESIAESIIEnIpA5Sejk56EE/v79i1+/fg0+GK3wu7FoUEMVFo3k5UqqwuYQysjOaX5ntb6K3Ntv0WKDWGQwdulAdnPjSgyXKPE+CZAACZAACZDANyZAwfsEgzcXvE/gEl0gARIgARIgARIggZchwBzelxlKdoQESIAESIAESIAESGCJAAXvEhVeIwESIAESIAESIAESeBkCFLwvM5TsCAmQAAmQAAmQAAmQwBIBCt4lKrxGAiRAAiRAAiRAAiTwMgQoeF9mKNkREiABEiABEiABEiCBJQIUvEtUHn7NQGezDSUe7tM5B/pNKrIMWaZhFosmZVQ9riW8WHbpYlLftyNtxZ85K+GXQS87khi/tlxS5R2HsoZy2M3uq8cztneOWeRzGwZGx7EI38+zi19k8Y6B+1TReXuBr39W/XNvoC8/mJ/y4KrKtobqf1cfNXbj78dVHrMQCZAACXyOgKzDy89jCfz58ydxoHNVDgfkruqSy8942JaubEfH2lL8xuTacLerXA44pBWGm9cfdFU+sxF5rbR7vemblhz9jP591Xietud9ySs3eZy6ypWffcBm4+/8GH9BP+ftro7cKYvVoje5MW8vnOeR841+Bz7tavQDpRt+fR80dvL/jIHPpztGAyRAAiSwToAR3s/9vXCH2gqN7VDldzB9Y5Nm32+E0dtVqkJV5TjUpxFcU1uoEshV2C75dq4IL4e2BA6btejy7Vq7ypLRKGzTbw7y1eN5ZXuqgTm7tfTlns7HP9RQeLv1EM9cWW53VsifXsliqeqHrs3bs7DHcYtwyM6IrkX5Ids3rOR3aKxw+r+Yrx87bRwaW1zxNuaG/acpEiCBH0mAgvdbDHvyWnSS6hCuazO+up68SvavLaevmrO116nnyqb3+vryOlJ2dTtsMmRJisLbViM/GuxtCtZgjy226SWMPvvXvd5uek3SFGK/5ykLE0P+RDfyD/gBe5/GIPWkztweZK9mqCH1IpYL9sZXuxp1XSepGdEPYZn6Euxr09/3HCzq+oBy228FfeoqgDV74fpNxnOx3djP9A8DaTP2aak/wBKXtfGfNnuuP7HdUEaegTH9I+E8Ga+w1fbSczdt99zZ2N50LM/5mj43ye/T2u/S0LyCyo/YFSlvDZPukjj0L8P0dzN9duf3PtiH9LkrdjgOfi4dnOMh9+SZGf34zNjJ764d/kju+32R7ZLPvEYCJEACZwisB39556sITFMapFV5FRpfDbeuTNIb/Otp/yoyvj5N0h/a0mF4TSn1xtf8Pt1gNZ3gXNnWlcPr8NCmmOm61qdepCa7qvKvSE/aaiufnjF5fSm+RrsTv53z9ft7bRk5hNEYUwXmoxP6kFf/b5YSMu2bp1uVruoiv97+5BW/1Imve+V49GGZfywrQyepG8m5d/OrxzNtT1zKfaqJpJuEn+hfyiAeS5l4P/RnTH0YuSyN/7Tvqb2e3zDOYUwmvvh7kfOUeWp3sd35ozA5T1lM7S6P5dxXMRb8jc/6yfO92l58Hnru8Xkfyi//boXf//F313k28fyjfQjjEfsw9r13ZvLcfvXYTfs04OEBCZAACdyQAG5oi6Y+SOCs4JV/7Cb/UKb/+E7/EUuFweRY/Dqxkzg7+cduWvZULMU83Fnb/t/2IHjDP9BRvHSuKkP+6ETwJs0HX2N5uTH+gxv/gY7FvT/zi/5m4BLyAaf/gE7rdK6qYuZiUs4zWMgnPOF2hr/4cVI+9icRUvcez8kfTL3gTdpsy0TQejEX2Z+OaRibBS79GE2GYv4czctM7ifs/fiFtpfGb/osL/jo66/9R8o/jn30Kv09iszSa8MfI3JTOCXjFW3475Pn68zzmPKe10vvieH5+ZeO3XvHdEKEJyRAAiRwFQGmNJyJfj/DLft7khsAQF6TAqfXZ96qLXQeX/H35dUbFtMrL5TNq07+MBp/0leys2b9qW5Q5UcYyWuwe1i1XW7XvylWyE5eryo0ZinHcKmx/pr97Vd+UD6BNDCKpVXToDzUqAWlqWHfYrpBUq7Pa8Su8Ks/xNSQU85X8o+Nz74/bO/CGM2aOXvqUzCGEgmD4VpysMIlKfFtDh/JXjXW//7Mc80Xf7esXU03+GgfTut9m2GjoyRAAiRwEwIUvDfBeD8jXsAd7ckyXkHYnWs3iEYrObZZhsJodKtC9XzZo01F9zXLKilsdY7jrka9B7ZLk6P63EXJbnTdXNxKG4Bpy6snoplachJLLKfOamzLI3a1+KPQRL07x+cnFTlITsVxFybSfJz/3Hg4/7i982O03NqNri5wuZHlEzOXn+uTKldf+Hr2p78r2sikNYv4d+zq79bC77x09ON9uBrThwvec+w+7BQrkgAJkEBPgIL32R8FvUWJAzZxEofdwxzXhF3amV40xsisbVajrH4SlQjMhbJKJqEdNsMsalvvoVYUo7Vm+IfcR1VxwM6+IdWX8R94uzc4li3siRiWiTB7bMVfbdCWB2ySSXFpD8NxmOQiE5nK1kzaSsv6SW2HHex2hYOtoX0IGJDOdnGZjPfyVwr5iljx/rzX3tCJ94znUOnzB2tcVi2PYm61yHCjfwsg56bGbniuJep8RPw7K/wxc8BmdY3nweD5g0ewT353vHNmj0OusVXA6u+Wf0OS/M5LRVujlgmZH+yDb+u4G59x78yc6aPGLqxmcfMFXM4/DbxLAiTw0whclfjAQnclMM/h9ZNi/ASjPvfQ59fNJxz1k7uGciGXz+cC+vy/kBc35Ab2E5Zi/uC0QxfKSv5fXz9dM3PwM/+X+5dfOzj4GNuQ++F4Zl/8S/uU52GNXvwv9797O77epMy0jehP+E5zUlMu8+vz84SpTMIrk8ldsRMCKvUjmdA19D+ZHBjzj9PqY7mvGc+xvf/u/uf/iH2U75irO47+WLZ0db+OsjAd/D/DZaibV+7fSV2pL8/JcN+3O38+k/PhGR79SvNby2o6EXCw65/z3s5KzutQNvb94lgKo8S3d/4uTdtrXVm2CQcZg+kzGCekRWYjgcQH4ZP270N96PPL+9/j8HsTnofR5/CsfN3Y9b2V/gz9i/2ecRrB8IgESIAEPkSAk9Y+hO22leaC9zbWW1fFBe+jQfmHZVAy8aJ8v6dsWo/HiwTmE4QWC7334quNkQibUwH+XiqxfFwhJJ7f9vvV2H+Wzm3HTgT3yf+W2nbcFOOz7rI+CZAACTjnmNLwoiF9ozfJOrKhk/JqWF5tzj/vKTuvy/MFApISoQ2KmIayUOS9lzhGa8T6tYOxXU1nWat57XWyv5bU+8vJGs+16jBOL+jX4d3jbuP5fi9ZgwRI4BUIZCL7X6Ej37kPf//+xa9fv27cBcmF3SDdC61sXfIPS9rce8qm9Xh8loDRUL+bhTzls7VWbr7SGImoKbDzOx/kqDqLk1TuFQqPufxK7D9L8HZjJ5uXyKTV0zz+z/rI+iRAAiRwSoCC95TJl1+5j+D98m6wQRIgARIgARIgARJ4SgJMaXjKYaFTJEACJEACJEACJEACtyJAwXsrkrRDAiRAAiRAAiRAAiTwlAQoeJ9yWOgUCZAACZAACZAACZDArQhQ8N6KJO2QAAmQAAmQAAmQAAk8JQEK3qccFjpFAiRAAiRAAiRAAiRwKwIUvLcieXM7svyPQtztdmLeaGRZNmz3O7k3nIT1LNWigaHQ6oEsGZTFLX2lvaU1ZW0NtVBG1tYMxWU5J1l4iB8SIAESIAESIAESeBwBCt7HsT/fst3DHBXe1KyYiMwN0HYV7OacmFRobAu1Ky4I45n9KKZh4GwDad6qBi02p6JXyRqzdrLBgojd/bZf79f+hi3vtyHAzHOekgAJkAAJkAAJkMAiAa7Du4jlay/O1+EV0bhJd4wA4DeNUDWUBkwvRCHiNz1fclvKFBaNMxd2LkoXlF8y1F8rW7h+WySJAhdh94CTCuJv83vhfl6hi/6f1OIFEiABEiABEiABErg9AUZ4b8/00xa1cWjLIHJlIzz5EbmaFTscjzsUWeZTGuQcykLHtIKlltUbFA7YLKUkTMpLRDi0Je1J+xBx27cfvluUh3pIs1CNDfd94Wl5ow3qHVB1vc2uQn5W7IYUjCGNYuIbT0iABEiABEiABEjg4wQoeD/O7o41DfaHEpIM4HNnJc1gv52JzyAkrZGtOS2KNdFr9jjkOfJEqJ44LlHgKKL7bx9hPmyCsB7uyVbFR+yKDDE3WKLR2caiqkrAlw95x7bew+ZJS9bi6MV3co2HJEACJEACJEACJPAFBCh4vwDyu5sQkZrmvmoTcmgH4Znm7lrUtUVlQr7ttC25d0CuDUwF7OqV6WOSixsjuSG0i9aftyiRo2or5Cj7a73QbhR86gUkCmzRvPUR3k7DFBkk+NxImb31Lpn9AbmaJySn3vYRZqY7pFB4TAIkQAIkQAIkcAMCFLw3gHhrE/a3DdFSCbNK1FTV+C3C06cHiAiVzxUrIJgau2Pphadqmkk6wqnPYi9DVit0bou9F9c1VGewVQ1Mp8K1JDVCUi8kn9ev6CARaMntHcSzgRaBa/awkIh1Dr09J3hPPeIVEiABEiABEiABErgFAQreW1C8sY1Jbqzk0doGb30qQZZJWsE1nxDdLds4WU3DtAo7XSPEXBMbfmUGEbctSp8jvMfWR3gt3uoChURsCwMlgnu7D2kOEjWWdIZMornHPp2hzy2O6RVKkjJ2Psf4kGtQ7ybMeUgCJEACJEACJPBlBCh4vwz1BxvyebEa+5MI73l7RhfYoUKjk3K6QSUCdL42rzYhLUFpGOfQVRabPn1ic4ipDCJ+M6jfTcglNhradKjy6eQ6yYjI9dYvZwYoNE2J4xErKReJbzwkARIgARIgARIggTsRoOC9E9jPmI2R00xSGvxKCQbbd0R4JcXAC9WTfNjza/P61AQfsVVJvq4B+kiurK9rmyQtwVq8mQ6q7iO7WYYN2qSMgfaz347r+cMDKK7SMKDgAQmQAAmQAAmQwE0JUPDeFOdtjPncWEkpiMt9ebPzHF6JxsZ0hbFdEcvFTgTr6b1QSsP4TSvGlRZi7SGVwo0iV1IWROj6pdHSaLFUUhpaWdhjsFCWYaUGv4KDT5PYwFYdnOtQ2ZCLfJJOERvnNwmQAAmQAAmQAAnciQAF753A3sXsXrYU3uCQKyj0EdGswK7fkc2vmmArdKtit/fKTywLu7CNWwZHeyFaG0XuotDtzYRItOT+9oLYSGpEv2awLFXWxYhwWIGh02Z9+TRJf5B1gE+i0nchSaMkQAIkQAIkQAI/iAB3WnuCwZ7vtPYELtEFEiABEiABEiABEngZAozwvsxQsiMkQAIkQAIkQAIkQAJLBCh4l6jwGgmQAAmQAAmQAAmQwMsQoOB9maFkR0iABEiABEiABEiABJYIUPAuUeE1EiABEiABEiABEiCBlyFAwfsyQ8mOkAAJkAAJkAAJkAAJLBGg4F2iwmskQAIkQAIkQAIkQAIvQ4CC92WGkh0hARIgARIgARIgARJYIkDBu0SF174BgbBRht/VbeatbIixdH1W7NOnYStmDXONJdl5TtWY7jRnoDOFenoRsDVULCv1dGhB+hUOpd6V7V7jG8uQAAmQAAmQwIsToOB98QFe7p4Ipiielku866oItCzs0Jbp/7qt7RVHbK2xOwLHXQHZ/jj+aGOwP5xej6Jxxdz7L9saegfk+QGbXpDOjQRB3Pu28U6h6H0N2y/vcSgbNGpWU3bCayyKxK6IXdn9zsj2zvY3bLnFfKfnmRWekgAJkAAJkAAJRAKOn4cT+PPnz8N9WHWgLV3Zrt51zrWuROl8ka5yOXJXdefKn7l3sa2+7tCOtD1tr6tyV7adq3K4/MOOnPHR35J20XNJj+f1xI/ev7Z0yCvXueBb2YZ6ANz0p3T/rvLZtbGMjIX0cVoHve15+zwnARIgARIgARIQAiCGxxN4ZsHbllHYrXDy4rMXvCtFrr18sa3e0KSctO+FpNxsXTkcOzcpd60TF8sFoToR04MAn1cO4vZEnHqRm7uqrVwV/5iY9KO3IyJZyk7+4pD2E5G/VG/uBs9JgARIgARI4IcToOB9ggfg6wVvKpqCgItRURFYUcxNIomJkByQRUEWo5RemKW2Z9HM3oYI0SACS1dVlY8On7TlReQZsT1vO/qw8D3Ri4PzHzjofYp8fD+i8XP+9vdOxauIchGvkdPoU2CUu6rqRW8vcruqdHmMGktx4RB96KPH4/loj0ckQAIkQAIk8JMJUPA+weh/reCNUcdRaAXxmbx671MUuq71qQGDnlpi5cVcjPCu2Y73nbyPd+WQaiDiONy7qq2l9pNrIpqjGA2XUyEZfYti+8rviUhPIqteay5FX6fXvJAXGyJM0+/B796vvh25PBHSUdAOorl0bVsO/ZSy0z4PhnlAAiRAAiRAAiTQE+CktZjM/GO+FRrbovT9leMOVQ6UrQ2Tp5RC3rNQaj6b6hKkNdtmMsHK7op+FQUN48K9d7clqxckk9XkuNgdZ5PYCj+xLXgtvvkUHvkj7/of28DqDBu0cK5ntIpB+uPQqRqZ+g/8h8ogayk422AgqQ2ceYNMugv+a8A4OAM/2S/L4rmGn/S238LJTDWZyOb9NtAyLmYPC5mgl0NvB+urnvEGCZAACZAACfxkAv/85M7/3L4rqKhqbw7hgm0Rbh2gigKZrHJQdbAnyxRcdsrsDyd1RSCKwPyIvXMtahGk5wrM7qnGwjVy8T9Rq9DPUOSAQjo9+RyxKzKEqyXaoHyRHWKhDbKsP84rdCKelazQUECrHMdcn67yEKvymwRIgARIgARIwBNghJcPwtcTiNHKtvQR2WT1rSt9sfhtT5ceO43wxuXKHrVm7UpUuS1F6aM7iTSHaLc2Meo+RqJ9Fb3tI8UKTVPieAQqk0SPr6THYiRAAiRAAiTw0whQ8P60EX90f2X92rjTgjboJJ/i3Z+ZkOwq5MhRlrmP+k5SFuRersaUgne3dYMK6UYS0dxxN6zJG1MzBuFvLd5MB1VHwR5SKsbItYGWdX1xxK6+atuL2Cq/SYAESIAESOBHEqDg/YHDbrTktsqrdI3/8sfAYSM7fhnoYocjDtj4nb4U3pTcyxZ2CZMNEGqoWL7fyGLZdrrJxRuUjfmrGQrbhM0UMGur38xiEIFL4xQ3vPBpr2l+bdhYwwtJ8U+9PVbwLvm+EOH1m0pIWaWhlYU9hoplWcoghLxnn7u8ga06ONehsptkbGK/HxXRXuoor5EACZAACZDA4wlkMnnt8W78bA/+/v2LX79+/WwI7+i97DrmA5wxp7Wve68c3jXXvB8ymW1QqtOSg5/TyxfOStTlAc0hR9WlIl7+vlAodli+bnTI7xXrxsBoPZkoeKFR3iYBEiABEiCBlyZAwfsEw0vB+wSD8BIuWD9JbqfWRfhLdJOdIAESIAESIIF3EqDgfSewexSn4L0HVdokARIgARIgARIggUCAObx8EkiABEiABEiABEiABF6aAAXvSw8vO0cCJEACJEACJEACJEDBy2eABEiABEiABEiABEjgpQlQ8L708LJzJEACJEACJEACJEACFLx8BkiABEiABEiABEiABF6aAAXvSw8vO0cCJEACJEACJEACJEDBy2fgBxOQdWuzsIPZjIJsGqHiFsize7c8lc0ksuzKndFklzW/A17qgeyuJrvkpdf6XfBiWanXb1kn/QqHUu/KdmemeUoCJEACJEAC340ABe93G7Gb+Bu2oD27be9N2nmAEb/d8HVCztYauyNw3BXw2xBnmf/WxmB/OL0eRWMQqaFsWm/x+BxkW0PvgDw/YLNSbtKWbC933KHo/fSC3OxxKBs0asZaNbCNRZHYFbG737qwlbP9DVtuuRvbDBtPSYAESIAEXpMAN554gnF96o0njGxRK1vVPgGoSy6I2C12OKJE68x5MefLGuiugS1qqGQbXxGZ9ZuBqgsY3cGeqMlLjlxzX/7o2ACtCND0eF5XotAaMBaN1chqhc5usVcFbNMCmw0O8yoo8e/K4v+Iml/4lK1D81u2KZ7dn23VvFCVl0iABEiABEjgexJw/DycwJ8/fx7uw5oDbQlXtmt3n/B6V7kcpbvk8qRfUievXOe707pyOHZuUu5m3W1dCbi8Ci16s97v3KWXQnOdq3I4YOknd1VbuSp2dtKP3tm2DHUngyjtJ20t1btZX2mIBEiABEiABB5PAI93gR58veBNBU8QX2U7CqsoxLoqH4VWIgLTERNBGMRY6aqqGoWmF3D9vYnYGtvx9Sb3gi/BXiLI3LqPwZe0nrTZC97eh0kTU+fH/i0Kyti3G4r+3qfI2POLDp7zd5WniHJhFbhGU+qnv2sAACAASURBVNLNMDa5q6pe9PYit6tKl+cJXxHFQ8V+fIbzFBiPSYAESIAESOB7EqDgfYJx+1rBGwXnKJImAtNHBINg7LrWRxdXtU9XuXIISYrojJHVNEqaCrH02CsyLziDfak/irAgtsVe9FfEZ38/8dH196OPY72PDazUj2I0WJj5/DGzvtYgQJPA7kTwhlI++jsKUOd8n+QPDul3+j340jNK/iiZ2I2CdhDNpWvbcuinlJ32eTDMAxIgARIgARJ4CQIUvE8wjF8reKXDqbicCToviqJwnd2bs+oF1FwsBdE5RkeHSK6UT0TZxFwUc8PFELUNQnbmR+rjvF56b7C1ciB1L0R24/0oqFcsXbw8EaBJ6bXrQeT+y/0rT8Ro2teude0scuv68Rgi3K4Xy0vOD2ORPguJYzwkARIgARIggRci8M/3zDym158joKDyz1nwtWUlgA5QRYFMVhuoxgle6fHQktnjiPlyAuGu/S3raqX3go9Grp+ZMHdab2jt4oHZHyY+SwWZsCaT9G49UU0b5/8CuOhUX0A1Fq6Rk/9ErQLfcOuAQmBPPkfsigzhapiwB50hG2azbZBlfYU4MU3JCg0FtMpxzPXpKg8T+zwhARIgARIgge9NgMuSfe/xe7z3InqdgySMyvJecRWso00XhjXQ4w2kd2IH1JsCjvbknr8eC93020K09HxJMlm5YH4tLDd23VJnN3XRG1NorJM3MdOftpS/MNDNr/erU2jTocohmRFDPV9Fb/s/KxSapsTxCFSmmfypcfs+0CIJkAAJkAAJPJYABe9j+X/v1mUd2bjjgTboRGFJnHarkR82g/i19R6q0YBuUM3XnLU1agNAb1EiWY/W7mGOJbZnortDW8fd6If34IDNxU0VZkKyq5AjR1nmPuo7EZhyL1ePFYWyjFrcSML3EZM1eeMawPHvCliLN9NB1eN6wRu0SeTaQMu6vjhi5wcgGuU3CZAACZAACbwggRdKz/i2XfnqHF6fN+pzV0tXD6ssyISwkDfr81b7XNuh7FLurUxqK5OVHNJc0SQ/dprjm7QhPqR2hxxUefsf84jjagNx0lpSP9ZN2go5t/3ktt5e6tbJQxLb7G2Nk9aSdsTP3shifvKFPOBp/6cerOXwTkv5ZNxp/nOaz3tSOF4Y+1CWIV/Z+9LzCn7NJ7zFOiP/aI3fJEACJEACJPBdCXDjiSf4I+apN554Aj73cEF2HfMBzpjT2jdyrxzetT54P9DCrezsMfi5ZmDxeom6PKA55KiSDTWkqPSv2GH5utHobJ/eYGSzEdl0hB8SIAESIAES+P4EKHifYAwpeJ9gEOhCT0B2diuwU+sinKhIgARIgARI4LsRoOB9ghGj4H2CQaALJEACJEACJEACL0uAk9ZedmjZMRIgARIgARIgARIgASFAwcvngARIgARIgARIgARI4KUJUPC+9PCycyRAAiRAAiRAAiRAAhS8fAZIgARIgARIgARIgARemgAF70sPLztHAiRAAiRAAiRAAiRAwctngARIgARIgARIgARI4KUJUPA+5fDKWqgKcdfeVReNRthSNpY10Nm4lWzcbnb9W0N29R0+sn3tyZa84ks2bBM8lOUBCZAACZAACZAACXwTAhS8TzlQCk2jsCuiIA2i80S41gqdc3DOYDv0Q3bXkmsXfroK+VAnHNi9wbFU+K1S0VxgdwQOm/RaBnVRjc+M85QESIAESIAESIAEHkSAgvdB4C82qw26yqJOhGXZzkRs3AYWCkpdtHihgMXeAFXToLFpOx2qHJi3bZtPN3jBH94mARIgARIgARIggdsQoOC9Dce7WFGNxceF5UpU+CRloXfd1NhBY+t1bJoacRrhPR/d7dtVNexdqNAoCZAACZAACZAACbyPAAXv+3g9tPQ8rWBIcVgVl7P0hoU0htAhiSQfZn0r0S6kRXQS7uWHBEiABEiABEiABL4RAQreJxwso2O+bMzhFSdzVFUJYCpE2xLI9RafSTCwtcYO+Syn94DNwgS4QhJ6z35USIkY0i3OFuZNEiABEiABEiABErg7AQreuyN+fwPaSA5tC5G34WNhRWduDVwLL0QlrUCE8QbtJ9IeeutWoTU6NtZ/T4V1nATHCO8ME09JgARIgARIgASengAF79MPEQCzxyHv82u1gXMdtCmwOZQLQjXt0BG7IkaLM2TFDkvxWW0M5nIX+GiEN22fxyRAAiRAAiRAAiTweAIUvI8fgwsehPzakLYQJ6IVsI3zqzhI2sH6JLJrc3iXXGCEd4kKr5EACZAACZAACXw/AhS8zz5mfvWECg1kk4kgdCW9QDIQZBUH11XATi9sUiG5tBaT1cNUA+uWorlLED4a4eUqDUs0eY0ESIAESIAESOBxBP55XNNseZWA7KC2AVrJ15XNJfwEsAauWajhRWx6I6Qx7BaKnl4as4SX7rUL4tjWaiH94bQ2r5AACZAACZAACZDAsxCg4H2WkUj8MHuLqrPQCnA+spsld1cOyxbO7xMsaQyzyO5SFdlGuDhdKVcEbVyJ4ZCttVsgM1UvxOfGwyoNqQSfl+A5CZAACZAACZAACXwlgczJ+3F+Hkrg79+/+PXr10N9YOMkQAIkQAIkQAIk8KoEmMP7qiPLfpEACZAACZAACZAACXgCFLx8EEiABEiABEiABEiABF6aAAXvSw8vO0cCJEACJEACJEACJEDBy2eABEiABEiABEiABEjgpQlQ8L708LJzJEACJEACJEACJEACFLx8BkiABEiABEiABEiABF6aAAXvSw8vO0cCJEACJEACJEACJEDB+7LPQL/Fb5YhO/ejapxuPzGFYnQGVV8qNdaRzSuywa6BzjJovynGWGZyJJtgZBppEW9jrZKUj/ZlV7q+nPgZDqXNqb1JezwhARIgARIgARL4UQQoeF98uMvWQfYWWfxpz20t/EEwtobeAZVpoLwJjabKcajXhLVFrXdQrUm2LDaoxUajl52Q7ZQbiyIRxCJ291sHI1Xsb9hym9hbNsOrJEACJEACJEACP4MABe+Lj/NhcybCuzncuPcGuvBqF01Qu96+agwq7KCXosSmhtGdF6oxqmvrGgccsStOfReN68uJ74cNsv47fIUIr90bHOVeGtmOEeEb95jmSIAESIAESIAEnp8ABe/zj9GnPHxPhNcLyVQk9sciJo+7Yiog+3tjqoOkUGxwKFvYVO167xUa20Ltimlqg6Qm7LehvI8MK7TNb+idQnsSlW4R49GqsSFiHSPUZTtEsI3uo8NdH9XuKuR5hc7GiPOncLIyCZAACZAACZDANyRAwfsNB+28yzF3t8DuKEHQ0yjpEPkMShaFiFdVA1FITsRmhyoH8qobRGWaHhHEreTMFtihQudzCpY81DCuBcSfmHNb78ZIbCFpDVvs/Xea3pDayqH6yLGkMGQbi6oqQ6Q3U5AAsq33sHlSx1oc1VufXpFc5yEJkAAJkAAJkMCPIUDB+3JDLdFUByfRT4lsRvE6P4/X4/dqBNTCHoGj2a9ObjM6RHZdamNhIhogordDZTde9GrTR2HFt7KF0XK/z8M9My4idjeQqK5F8wZf13UapsggGRVNo2D2YZKd2R+QR5V8xiZvkQAJkAAJkAAJvC4BCt7XHVvJQwjRW4ngSjQXMfo7i/qey281exzyEiUMeg15QswL10lkN0xEQ9UsTBzrBflQ3kDXahYZlohxiNieNAYgtudTMPZbOLElE9m8eDfQInC9QDfYH3LobZJQvGSQ10iABEiABEiABF6aAAXvKw/vPMILhcb0Oa19ZLercuR6u/LK30BvDigbA9Mo7PTaSgsziKb26Q1SRz4SkR1zfdOyIsBr0ap+6TJJtQjlNIyP2C6LXp/OkEk01+dsjLnFUbgrWaFhB61qHHIN6t2UOY9JgARIgARI4AcScPw8nMCfP39u70NbOgDTn7xynXOS7eDyqnOuq1yO0rUrrUs5lOPdod5K+XC5dSVyJ+bHT+eqHC4xFW759uHQ+zWW749S/9Jjd2rvxDff/7kfJy3wAgmQAAmQAAmQwA8gwAjvK/+RcxLhDZ3VpoM2BbLVCWIh9WFjp5PQtAkrLSxHa4Ntyee1lZksS4Y+smw3s80gYhpCmvubjoe/vzCBzVq8mQ6qHlMzJKd3XB0iRKYhS5vV6XYWqXEekwAJkAAJkAAJ/BQCFLwvONLDOrXzHF5/rmEk5eAYOn6yIYTsXJYVfm3cySQ0XzxMOvNieWEnM2k3FZ4x9cCvClHscMQBm5h2kHL3E9yieJ2J4lhOVluIx0pDqzCZTi6VZVipwQtx77+IbllVop8gt9RmtMVvEiABEiABEiCBlydAwfuCQzysUxtXYJBvv0pDiTI/YCOTxOI90+fPauNzbbMN/Bq4Y7R0DiiuAiErjI1LjInYnefUys5n6RJmctyqcfLbIIg1/OoMoWyM6IYtidMl1PJ+ElyoV0P1a+0aY3w7UtMvVda5PtobfO20QUHROx9InpMACZAACZDAjyGQSdrGj+ntk3b079+/+PXr15N6R7dIgARIgARIgARI4HsTYIT3e48fvScBEiABEiABEiABErhAgIL3AiDeJgESIAESIAESIAES+N4EFgSv5E7OJg7JRKAkB1JyKPvdYUPvZdJRcn+KZNxEQOqdm+E/rcczEiABEiABEiABEiABEvg8gQXBOxr1s/3jLl3JjH/ZtOuw6WfVi9BVDczFiUEWqnFobEHROyLmEQmQAAmQAAmQAAmQwJ0JTARvmP2+wUGWj8oy1G82zLL3M/yrYWa/nJZtPwO/X0NVVgZo1Q7ry54qyI6vsi3s+goAd+4tzZMACZAACZAACZAACfw4AgurNEgKwh5bF5eHei8T2bSgGNZ5Xastgtnotbs/6zpXafhZ483ekgAJkAAJkAAJfC2BSYT3tOnZWqiS3jD5Uagtwvqt/rrk/vbrtPbrvEo0GMhR9WumxnVZvdjtNxyY5AOfOsErJEACJEACJEACJEACJPBhAiuCN6Q0BCFa+o0IRKh2VY7c72Al6QwtvJZFSFNwXYV85obfecvmyGWL12I20U3K9lvLMtI7A8dTEiABEiABEiABEiCBmxGYCN4xhzeI3M8IUb/zltHofI6vRHhb2ZqLE9ZuNnQ0RAIkQAIkQAIkQAIkcA2BieCVCWVp5DYYCNFeSWWQrWOPu6JPa5DJbcufsM2sQttPaAulNIzroE0xWeJs2QKvkgAJkAAJkAAJkAAJkMBtCEwE77LJyykNk3pGo5DI7uKkt5DfK6s5aEn+5YcESIAESIAESIAESIAE7kzgn5vb1wbuwuoLEkm+UOTmbtEgCZAACZAACZAACZDAzyRwheANKQ0jngLZLp7lUP7QQBc7HAFsVN3n7cYyksqwIm9llYZiB8UlyiIsfpMACZAACZAACZAACdyYwCSlYZi0lqteyEprY0pDXFIsfI+rNBi9AfqNKCRdoZgsXTZfyqw/lyUguErDjYeT5kiABEiABEiABEiABOYEFjaemBfh+b0JcOOJexOmfRIgARIgARIggZ9MYBLh/ckg2HcSIAESIAESIAESIIHXJEDB+5rjyl6RAAmQAAmQAAmQAAn0BCh4+SiQAAmQAAmQAAmQAAm8NAEK3pceXnaOBEiABEiABEiABEiAgpfPAAmQAAmQAAmQAAmQwEsToOB96eFl50iABEiABEiABEiABCh4+QyQAAmQAAmQAAmQAAm8NAEK3qccXgOdKdT2KZ1bcMqiVnGDEQ2zUAJIyqgaFtLHDLL/yPonqZNda3fdGnyba1yv8Udsv29sbK2g/EC+r965Xlx3L7aXMoxjNH4H/tf2/XzLYeOa0Xbo9/k6X3M3svia1k6fkcA3kw154rN//sH/Gkdlp8v+9+pRYzf+fnxNl9kKCZDADybg+Hk4gT9//iQ+dK7K4YDcVV1y+RkP29KV7ehYW4rfmFwb7naVywGHtMJw8/zBbewucJ35f94Lubtg40ylrsr7/r6v3hmTV946bc/7kldu8kh1lSs/+5DNGfpx/oJnd97uKplTFqtFb3Jj3l44zyPnT/we3MS9aCT6gdINv8IPGjv5/R74RP/4TQIkQAI3JsAI79P9saPQ2A5V/nSOnThk9ofJNaUqVFWOQy0R3OnH1BaqBHKlpjeuOLuN3VOuc/8vu3JqY7WO0ShsA2c0gHfUWzX4nhtXtqcamOb945F6ssxQ4e1zZtMmFo+X210qeiWLpaofujZvz8Iec+htD8Rvpz5uy/6hJm5RSfzoKpz+b+brx04bh8YWF9723KLTtEECJPCTCVDwfovRT16JTlId4qvo8bX15DWyf2U5vmL2r1TXXqWeK5ve6+vLq8jNAThs4mvaAPJtq5EfDfYTxWuwxxbbCev0NfOFfgC4zm7k1KctDH6fpkOc+j/3R2xEe1mfljDpQDgZ2siQDWwt6vqAcitid+0z2s7uNaZrTUtihk6ZpH0Pz5I2vX/+FbyUj8+RRl3XPm3llOFSg8GONkvPaGy3byuLnOP58jhe1+6SL/FatC99SlNcwvVlXwGkYy3pCfIzjHm0Pf9WUPkRuyLlrWH8H0J92dTuxN7I7LStD/ahTyXy9oodjnN3J+fneMi9pd+R6Nf7xk43Fezwh3Lf7wmLiWM8IQESIIH3E7hxxJjmPkBgmtIgBuQ1aHwt3LoySW/wr6b9a8j46jRJf2hLh+EVpdQb0wt8WsBqOsG5sq0rh1fhoU0x03WtT71ITXZV5V+PnrTVVj49Y3x1GX2XPsbjtX44d71dYTfl5fxr2vjaVtoKXKf+Rx/kXmAhqRkDS881jsdow7e1wGbaZnwgZvXuPqZpe8Iw9+kmoV9J3yZpGpFDel8exzT1QfgEnlOGfT9PeIst+en5Dc/oJc7r47jYbsS8+J2ymNq9z+9T2l7g59N5hMPwvERHl3+/YvrM8PvlucXf54/2IYxvtDn2/RnGbtqnSIffJEACJHArAozwvv9vhK+tYfY45BrjG9EGJQ7Ym/HVadla+DfTSo2vKO1vWJSIQUa9LQF/bcH9M2Ul6nI47lD4iFaB3RE47A3UmdQE39ah7ifdWdR7DP6H1sX3+Fr3Qj8Sdy/bTQpfOJz6n/qjYZz4lqPqDHyMVjeo8iPMNGztI1JLbGAtjrnC6lv9rxjTpf7nFTrn4JxDW8YCad/Tsej73hezu6KPcgufcG/KMNpLv1N782f0es6pRTm+3O68RnL+CPY+jcGhkzyl/ncpBi/Xfr9g9zCo0MSXBNr4cfOB4Y/2wdTYJTaVvI1J0EwPv3rsQiTcTt4MTT3iGQmQAAl8hgAF72fofUFd+3v+L4D8wyDadX595ozaQucijMN1X169LYuwC2XzqvP/2IpQ8j/p69hZs/40FYh2D6u2C+2GfixVX712ld3V2hdufMAfAO9mI2/GT8buDmN6obc+ZWEoc6Hvfb4ndoV/jT9JmxlsfI+DR7JXjR3+2DhsxhSHxWdI/mhaQfrRPpzWW2mAl0mABEjgBQlQ8D75oCqZ/XO0J5PA/PWzvis0poKVHNssQ2E0ulWher7scRJ2MdAxPLXavsJW5zju6hDd/eTEqLGZe9kdWzh3tMT8/WyArxnTcz35wL0+SunaEsfdfScYLXH+gMeLVb6e/envizbyBsEi/t2z+gwt/N5Lpz7eh0UkN714z7G7qaM0RgIk8OMIUPA++5DrrU9h2ESRKa86j2Oqwrr78g8tYGJU1jYLUdZYe72sf+152AwzqG29hxres8b64dtaM/wjrpqQerGzbyEtoC86/cd9Wn/t7H12JVp5lKwC/zG1TMw5YLO6ju9aq0kKg7wKXmC+ykZSS1bEim/tS8Z0rV8fuG5r6LgotDbh1fxZM6OYO1vM31zjfKtxnHnwCPbJ74/3JklJWH2G/NuMA4bfe6loa9TyxuaDffBtHXfjWHpn5r8bjxq7sJrFmUyp2UDylARIgATeSeBWycC083EC80lrftJXOtFnWDNzOploWk4mffQThPzEmHQCUpw4FCe9zH29ULafMCOTj9L1Mof283+5f/m1g0M7cVKM3A/HM/t55f7dr9krE8Pq4Xg2aewDdmWd2XSCVlnJ+r9hktXgbz+Bajif+dP6iW8js2HClUyJm/jqLwyTwUY208lBQvuk3p3HdGzvv7v/+T+W+xKfgrFsOhZx7ARo66oymfQWBzjt14RhaE94jLbnYytrAifPbPq8946tjeOEp3/WezsnE8KCoakPs0lkwyTP+Rglvr3z92naXuvKsk04CJs4ibLv6MrvV5iAmYxd2r8PPT/T5zWdTDj6/NVjNwy2y4f+RfYzTn1RfpEACZDARwhIThk/DyYwF7y3cad1VVzsPhqUfyQTsRIvyz+s15cda73ukfyDG1dl+GAvRcQM/4B/0MZJtVcbpxtwThjF1TySSzc8fDX2n0Vz27ETwX3yv6ZW/vTkhwRIgARuQ4ApDe+MiH+X4kZvTrb4ldf78lpz/nlP2Xldnq8QkFf/2qCIqSgrxd5zmeO0RqtfOxjbSfrMWumPXCf7j1C7ro6s8VyrDuMUg34d3j3uNp7XecZSJEACL0XgNrqZVj5D4F4R3iHFoU91OImgDE7HV4jj69P1skOlFz1I0y8+GeUVQm05SQP5HLRXGqcbc/4c2CtqvxL7K7p7tsjtxk7SVsZUoLON8iYJkAAJfIpAJrVfSsF/w878/fsXv379+oae02USIAESIAESIAESeH4CTGl4/jGihyRAAiRAAiRAAiRAAp8gQMH7CXisSgIkQAIkQAIkQAIk8PwEKHiff4zoIQmQAAmQAAmQAAmQwCcIUPB+Ah6rkgAJkAAJkAAJkAAJPD8BCt7nHyN6SAIkQAIkQAIkQAIk8AkCFLyfgHffqrIWpULc0XXSltHIsmzY7ndybzgJa1mqRQNDodUDWytkqobfoVfaW1pP1tZQC2VkXc1Q3EC/e0vfVZd4gwRIgARIgARIgAQ+RICC90PYvqCS3cMcFd7UrC0RmRug7SrYjT7ZXGIsrdDYFmpXXBDGYw1/FMU0DJxtIM1b1aDF5lT0qga2sZPNFUTs7rcuLCJvf8OW99sMYOY5T0mABEiABEiABEhgkQDX4V3E8rUX5+vwimjcHKY+lK2DUTWUBkwvRCHiNz2fVglnUqawaJy5sGuRRIQL7I5LRpJrZQvXb4kkUeBipYL42/xeuJ9X6KL/iVkekgAJkAAJkAAJkMC9CDDCey+yn7CrjUNbAiIaZV8Q+RG5mhU7HI87FFnmUxrkHMpCx7SCpTbVGxQO2CylJEzKS0R4bE/ah4jbvv3w3aI81EOahWpsuO8LT8sbbVDvgKrrbXYV8rNit99O9FxfJv7yhARIgARIgARIgASuI0DBex2nLy5lsD+UkGQAnzsraQb77Ux8BiFpjQlpBWtC0exxyHPkiVA96YxEgaOI7r99hPmwCcJ6uLfBAUfsigwxN1ii0dnGoqpKwJcPece23sPmSUvW4ujFd3KNhyRAAiRAAiRAAiTwBQQoeL8A8rubEJGa5r5qE3JoB+GZ5u5a1LVFZUK+7bQtuXdArg1MBexqM70dzyQXN0ZyQ2gXrT9vUSJH1VbIUfbXeqHdKPjUC0gU2KJ56yO8nYYpMkjwuZEyez/tDWZ/QK7mCcnRAfnuI8xMd0ih8JgESIAESIAESOAGBCh4bwDx1ibsbxuipRJmlaipqvFbhKdPDxARKp8rVkAwNXbH0gtP1TSTdIRTn8VehqxW6NwWey+ua6jOYKsamE6Fa0lqhKReSD6vX9FBItCS2zuIZwMtAtfsYSER6xx6e07wnnrEKyRAAiRAAiRAAiRwCwIUvLegeGMbk9xYyaO1Dd76VIIsk7SCaz4hulu2cbKahmkVdrpfaiw14VdmEHHbovQ5wntsfYTX4q0uUEjEtjBQIri3+5DmIFFjSWfIJJp77NMZ+tzimF6hJClj53OMD7kG9W4KncckQAIkQAIkQAJfRYCC96tIf7QdnxersT+J8J43aHSBHSo0OimnG1QiQOdr82oT0hKUhnEOXWWx6dMnNoeYyiDiN4P63YRcYqOhTYcqn06uk4yIXG/9cmY+TaEpcTxiJeUi8Y2HJEACJEACJEACJHAnAhS8dwL7GbMxcppJSoNfKcFg+44Ir6QYeKF6kg97fm1en5rgI7Yqydc1QB/JlfV1bZOkJViLN9NB1X1kN8uwQZuUMdB+9ttxPX94AMVVGgYUPCABEiABEiABErgpAQrem+K8jTGfGyspBXG5L292nsMr0diYrjC2K2K52IlgPb0XSmkYv2nFuNJCrD2kUrhR5ErKgghdvzRaGi2WSkpDKwvbr91blmGlBr+Cg0+T2MBWHZzrUNmQixymsMUW+U0CJEACJEACJEAC9ydAwXt/xrdrYS9bCm9wyBUU+ohoJptFhB3Z/KoJtkK3KnZ7V/zEsrAL27hlcLQXorVR5C4K3d5MiERL7m8viI2kRvRrBstSZV2MCIcVGDptUMT83hMqXKXhBAkvkAAJkAAJkAAJ3IQAd1q7CcbPGZnvtPY5a6xNAiRAAiRAAiRAAiSQEmCEN6XBYxIgARIgARIgARIggZcjQMH7ckPKDpEACZAACZAACZAACaQEKHhTGjwmARIgARIgARIgARJ4OQIUvC83pOwQCZAACZAACZAACZBASoCCN6XBYxIgARIgARIgARIggZcjQMH7ckPKDpEACZAACZAACZAACaQEKHhTGjwmARIgARIgARIgARJ4OQIUvC83pD+lQ2GjDL+r26zLsiHG0vVZsU+fhq2YNcw1lmTnuZNNNwx0plDPt5+zNVQsK/V0aEH6FQ6l3pXtXuMby5AACZAACZDAixOg4H3xAV7ungimKJ6WS7zrqgi0LOzQlun/uq3tFUdsrbE7AsddAdn+OP5oY7A/nF6PonHF3Psv2xp6B+T5AZtekM6NBEHc+7bxTqHofQ3bL+9xFqPWbAAAFrxJREFUKBs0alZTdsJrLIrErohd2f3OyPbO9jdsucV8p+eZFZ6SAAmQAAmQAAlEAo6fhxP48+fPw31YdaAtXdmu3nXOta5E6XyRrnI5cld158qfuXexrb7u0I60PW2vq3JXtp2rcrj8w46c8dHfknbRc0mP5/XEj96/tnTIK9e54FvZhnoA3PSndP+u8tm1sYyMhfRxWge97Xn7PCcBEiABEiABEhACIIbHE3hmwduWUditcPLisxe8K0WuvXyxrd7QpJy074Wk3GxdORw7Nyl3rRMXywWhOhHTgwCfVw7i9kScepGbu6qtXBX/mJj0o7cjIlnKTv7ikPYTkb9Ub+4Gz0mABEiABEjghxOg4H2CB+DrBW8qmoKAi1FREVhRzE0iiYmQHJBFQRajlF6YpbZn0czehgjRIAJLV1WVjw6ftOVF5BmxPW87+rDwPdGLg/MfOOh9inx8P6Lxc/72907Fq4hyEa+R0+hTYJS7qupFby9yu6p0eYwaS3HhEH3oo8fj+WiPRyRAAiRAAiTwkwlQ8D7B6H+t4I1Rx1FoBfGZvHrvUxS6rvWpAYOeWmLlxVyM8K7ZjvedvI935ZBqIOI43LuqraX2k2simqMYDZdTIRl9i2L7yu+JSE8iq15rLkVfp9e8kBcbIkzT78Hv3q++Hbk8EdJR0A6iuXRtWw79lLLTPg+GeUACJEACJEACJNAT4KS1mMz8Y74VGtui9P2V4w5VDpStDZOnlELes1BqPpvqEqQ122Yywcruin4VBQ3jwr13tyWrFyST1eS42B1nk9gKP7EteC2++RQe+SPv+h/bwOoMG7Rwrme0ikH649CpGpn6D/yHyiBrKTjbYCCpDZx5g0y6C/5rwDg4Az/ZL8viuYaf9LbfwslMNZnI5v020DIuZg8LmaCXQ28H66ue8QYJkAAJkAAJ/GQC//zkzv/cviuoqGpvDuGCbRFuHaCKApmsclB1sCfLFFx2yuwPJ3VFIIrA/Ii9cy1qEaTnCszuqcbCNXLxP1Gr0M9Q5IBCOj35HLErMoSrJdqgfJEdYqENsqw/zit0Ip6VrNBQQKscx1yfrvIQq/KbBEiABEiABEjAE2CElw/C1xOI0cq29BHZZPWtK32x+G1Plx47jfDG5coetWbtSlS5LUXpozuJNIdotzYx6j5Gon0Vve0jxQpNU+J4BCqTRI+vpMdiJEACJEACJPDTCFDw/rQRf3R/Zf3auNOCNugkn+Ldn5mQ7CrkyFGWuY/6TlIW5F6uxpSCd7d1gwrpRhLR3HE3rMkbUzMG4W8t3kwHVUfBHlIqxsi1gZZ1fXHErr5q24vYKr9JgARIgARI4EcSoOD9gcNutOS2yqt0jf/yx8BhIzt+GehihyMO2PidvhTelNzLFnYJkw0QaqhYvt/IYtl2usnFG5SN+asZCtuEzRQwa6vfzGIQgUvjFDe88GmvaX5t2FjDC0nxT709VvAu+b4Q4fWbSkhZpaGVhT2GimVZyiCEvGefu7yBrTo416Gym2RsYr8fFdFe6iivkQAJkAAJkMDjCWQyee3xbvxsD/7+/Ytfv379bAjv6L3sOuYDnDGnta97rxzeNde8HzKZbVCq05KDn9PLF85K1OUBzSFH1aUiXv6+UCh2WL5udMjvFevGwGg9mSh4oVHeJgESIAESIIGXJkDB+wTDS8H7BIPwEi5YP0lup9ZF+Et0k50gARIgARIggXcSoOB9J7B7FKfgvQdV2iQBEiABEiABEiCBQIA5vHwSSIAESIAESIAESIAEXpoABe9LDy87RwIkQAIkQAIkQAIkQMHLZ4AESIAESIAESIAESOClCVDwvvTwsnMkQAIkQAIkQAIkQAIUvHwGSIAESIAESIAESIAEXpoABe9LDy87RwIkQAIkQAIkQAIkQMHLZ+AHE5B1a7Owg9mMgmwaoeIWyLN7tzyVzSSy7Mqd0WSXNb8DXuqB7K4mu+Sl1/pd8GJZqddvWSf9CodS78p2Z6Z5SgIkQAIkQALfjQAF73cbsZv4G7agPbtt703aeYARv93wdULO1hq7I3DcFfDbEGeZ/9bGYH84vR5FYxCpoWxab/H4HGRbQ++APD9gs1Ju0pZsL3fcoej99ILc7HEoGzRqxlo1sI1FkdgVsbvfurCVs/0NW265G9sMG09JgARIgARekwA3nniCcX3qjSeMbFErW9U+AahLLojYLXY4okTrzHkx58sa6K6BLWqoZBtfEZn1m4GqCxjdwZ6oyUuOXHNf/ujYAK0I0PR4Xlei0BowFo3VyGqFzm6xVwVs0wKbDQ7zKijx78ri/4iaX/iUrUPzW7Ypnt2fbdW8UJWXSIAESIAESOB7EnD8PJzAnz9/Hu7DmgNtCVe2a3ef8HpXuRylu+TypF9SJ69c57vTunI4dm5S7mbdbV0JuLwKLXqz3u/cpZdCc52rcjhg6Sd3VVu5KnZ20o/e2bYMdSeDKO0nbS3Vu1lfaYgESIAESIAEHk8Aj3eBHny94E0FTxBfZTsKqyjEuiofhVYiAtMRE0EYxFjpqqoahaYXcP29idga2/H1JveCL8FeIsjcuo/Bl7SetNkL3t6HSRNT58f+LQrK2Lcbiv7ep8jY84sOnvN3laeIcmEVuEZT0s0wNrmrql709iK3q0qX5wlfEcVDxX58hvMUGI9JgARIgARI4HsSoOB9gnH7WsEbBecokiYC00cEg2DsutZHF1e1T1e5cghJiuiMkdU0SpoKsfTYKzIvOIN9qT+KsCC2xV70V8Rnfz/x0fX3o49jvY8NrNSPYjRYmPn8MbO+1iBAk8DuRPCGUj76OwpQ53yf5A8O6Xf6PfjSM0r+KJnYjYJ2EM2la9ty6KeUnfZ5MMwDEiABEiABEngJAhS8TzCMXyt4pcOpuJwJOi+KonCd3Zuz6gXUXCwF0TlGR4dIrpRPRNnEXBRzw8UQtQ1CduZH6uO8XnpvsLVyIHUvRHbj/SioVyxdvDwRoEnptetB5P7L/StPxGja16517Sxy6/rxGCLcrhfLS84PY5E+C4ljPCQBEiABEiCBFyLwz/fMPKbXnyOgoPLPWfC1ZSWADlBFgUxWG6jGCV7p8dCS2eOI+XIC4a79LetqpfeCj0aun5kwd1pvaO3igdkfJj5LBZmwJpP0bj1RTRvn/wK46FRfQDUWrpGT/0StAt9w64BCYE8+R+yKDOFqmLAHnSEbZrNtkGV9hTgxTckKDQW0ynHM9ekqDxP7PCEBEiABEiCB702Ay5J97/F7vPciep2DJIzK8l5xFayjTReGNdDjDaR3YgfUmwKO9uSevx4L3fTbQrT0fEkyWblgfi0sN3bdUmc3ddEbU2iskzcx05+2lL8w0M2v96tTaNOhyiGZEUM9X0Vv+z8rFJqmxPEIVKaZ/Klx+z7QIgmQAAmQAAk8lgAF72P5f+/WZR3ZuOOBNuhEYUmcdquRHzaD+LX1HqrRgG5QzdectTVqA0BvUSJZj9buYY4ltmeiu0Nbx93oh/fggM3FTRVmQrKrkCNHWeY+6jsRmHIvV48VhbKMWtxIwvcRkzV54xrA8e8KWIs300HV43rBG7RJ5NpAy7q+OGLnByAa5TcJkAAJkAAJvCCBF0rP+LZd+eocXp836nNXS1cPqyzIhLCQN+vzVvtc26HsUu6tTGork5Uc0lzRJD92muObtCE+pHaHHFR5+x/ziONqA3HSWlI/1k3aCjm3/eS23l7q1slDEtvsbY2T1pJ2xM/eyGJ+8oU84Gn/px6s5fBOS/lk3Gn+c5rPe1I4Xhj7UJYhX9n70vMKfs0nvMU6I/9ojd8kQAIkQAIk8F0JcOOJJ/gj5qk3nngCPvdwQXYd8wHOmNPaN3KvHN61Png/0MKt7Owx+LlmYPF6ibo8oDnkqJINNaSo9K/YYfm60ehsn95gZLMR2XSEHxIgARIgARL4/gQoeJ9gDCl4n2AQ6EJPQHZ2K7BT6yKcqEiABEiABEjguxGg4H2CEaPgfYJBoAskQAIkQAIkQAIvS4CT1l52aNkxEiABEiABEiABEiABIUDBy+eABEiABEiABEiABEjgpQlQ8L708LJzJEACJEACJEACJEACFLx8BkiABEiABEiABEiABF6aAAXvSw8vO0cCJEACJEACJEACJEDBy2eABEiABEiABEiABEjgpQlQ8D7l8MpaqApx195VF41G2FI2ljXQ2biVbNxudv1bQ3b1HT6yfe3JlrziSzZsEzyU5QEJkAAJkAAJkAAJfBMCFLxPOVAKTaOwK6IgDaLzRLjWCp1zcM5gO/RDdteSaxd+ugr5UCcc2L3BsVT4rVLRXGB3BA6b9FoGdVGNz4zzlARIgARIgARIgAQeRICC90HgLzarDbrKok6EZdnORGzcBhYKSl20eKGAxd4AVdOgsWk7HaocmLdtm083eMEf3iYBEiABEiABEiCB2xCg4L0Nx7tYUY3Fx4XlSlT4JGWhd93U2EFj63VsmhpxGuE9H93t21U17F2o0CgJkAAJkAAJkAAJvI8ABe/7eD209DytYEhxWBWXs/SGhTSG0CGJJB9mfSvRLqRFdBLu5YcESIAESIAESIAEvhEBCt4nHCyjY75szOEVJ3NUVQlgKkTbEsj1Fp9JMLC1xg75LKf3gM3CBLhCEnrPflRIiRjSLc4W5k0SIAESIAESIAESuDsBCt67I35/A9pIDm0LkbfhY2FFZ24NXAsvRCWtQITxBu0n0h5661ahNTo21n9PhXWcBMcI7wwTT0mABEiABEiABJ6eAAXv0w8RALPHIe/za7WBcx20KbA5lAtCNe3QEbsiRoszZMUOS/FZbQzmchf4aIQ3bZ/HJEACJEACJEACJPB4AhS8jx+DCx6E/NqQthAnohWwjfOrOEjawfoksmtzeJdcYIR3iQqvkQAJkAAJkAAJfD8CFLzPPmZ+9YQKDWSTiSB0Jb1AMhBkFQfXVcBOL2xSIbm0FpPVw1QD65aiuUsQPhrh5SoNSzR5jQRIgARIgARI4HEE/nlc02x5lYDsoLYBWsnXlc0l/ASwBq5ZqOFFbHojpDHsFoqeXhqzhJfutQvi2NZqIf3htDavkAAJkAAJkAAJkMCzEKDgfZaRSPwwe4uqs9AKcD6ymyV3Vw7LFs7vEyxpDLPI7lIV2Ua4OF0pVwRtXInhkK21WyAzVS/E58bDKg2pBJ+X4DkJkAAJkAAJkAAJfCWBzMn7cX4eSuDv37/49evXQ31g4yRAAiRAAiRAAiTwqgSYw/uqI8t+kQAJkAAJkAAJkAAJeAIUvHwQSIAESIAESIAESIAEXpoABe9LDy87RwIkQAIkQAIkQAIkQMHLZ4AESIAESIAESIAESOClCVDwvvTwsnMkQAIkQAIkQAIkQAIUvHwGSIAESIAESIAESIAEXpoABe9LDy87RwIkQAIkQAIkQAIkQMH7ss9Av8VvliE796NqnG4/MYUim1FkV5SLtablDXSWQftNMWKJ2bdsgpFpTIrIbnNrbUr5eE/K9caNju1ImzN7syZ5SgIkQAIkQAIk8HMIUPC++FiXrYPsLbL4057bWviDYGwNvQMq00B5ExpNleNQrwtruzc4ltvplsXaoFU7FEtKWbZTbuzknojd/dbBaAD2N+zc3ge7w2okQAIkQAIkQALfnwAF7/cfw7M9OGzORHg3h7N133/TQBde7aIJatebUI1BhR10vRRLttibI8qtho8MJ9Fo795hM4lQi/715eSm3Ou/w1eI8HoBPau3Gi1+fydZgwRIgARIgARI4JsRoOD9ZgP2Xnc/FOH1KQYKS/pUIqnL4lFSKDY4lC1sqna9wwqNbaF2xWlqg6mxQ4VGA6qx6KocKNtpRLqrkCNH1YUIrpTzEesYoU7KG21Qi+bu+qi21M0rdDZGnN9LkOVJgARIgARIgAS+OwEK3u8+gif+x9zdArujBEEvRHiPOxQSVY05sZIR4FMMmkmUNjajTYvyOI/WSs5s4YVr53MKYun0W8O4FhB/hjQFi7qeRpm96FV1UiZEjVVrJ/544b2xqKoyRHqzINBtvYfNk3atxVG99ekVyXUekgAJkAAJkAAJ/BgCFLwvN9QSTXVwEv2UyGbM352fx+vxe4iA9hFSCbkufjRMW+K4q4dJZkaHyK4bbIhqXpiIBhG9HSq78YLW1ho7H7uVhsLkNplgVwSl3qcybCCSeBDuqsb/1Rk2kCiwRfOGEBHuNEwhdYGmUTD7kD5h9gfkKsmvWOwTL5IACZAACZAACbwygczJu2F+Hkrg79+/+PXr1219kNULfBJsYjYvUeKAwzG5JofJK3/Jjy1sA5dEav01o5O0AIkiF9ipdlJutBruG90tpDeMpYzWkLBtrQGTiuWxyNmjJV99BRHb3uYb6qyG6qbR4bNGeZMESIAESIAESODlCDDC+3JDmnRoHuGFQmP6nNY+sis5s7nehlf+foUFhTYRu4m15LC3c9ic5uRKqT4v1/S5vJJ+oBYSgrUx05UZENMxVtIwkuXHTiPBSVqGkhUfdtCqxiHX2DLAm4wdD0mABEiABEjg5xGg4H3lMY/5uZKjG6O9SnJz+xzcXuBKCoB8TL2DaucidAWQ2JH02f1k9dyQmiC5tcOyZIA2HbRZmLC2aDpMTpsvo+Yns/XlxV6Y2zYut+YzNqJwF2HflDge0+XRFhvjRRIgARIgARIggR9AgIL3lQf5JMIbOhsFaFZMBa42/Tq2VzKR8mnqg1STfF5bmckEM/SRZbu50WYQ1uLNdFD1GAmWnN5xdQgD7QX+Ebt6Lsiv7ByLkQAJkAAJkAAJvAwBCt6XGcqxI8M6tfMIrz/XMJJy0OfxntsQYrR43ZG0mwpPv5JCXFe32OGIAzbJahDLVo/YFaOQjbvE+YlssYLS0MrC9n0oy7BSg0+bkNzlTER3BxcnyF1sMxrmNwmQAAmQAAmQwCsSoOB9wVEd1qmNKzDIt3/nX6LMD9jUaly9wcBv/TsuFRaAeNHci1URm2Vzfh1bP4FssrpC2PlsnprQKoN+AYUV8pdTGoKQlsloIaXBGOPX5ZVkjEzSKTrXR3vDihWdNigoeld48zIJkAAJkAAJvD4BrtLwBGN8l1UanqBfdIEESIAESIAESIAEnoEAI7zPMAr0gQRIgARIgARIgARI4G4EKHjvhpaGSYAESIAESIAESIAEnoEABe8zjAJ9IAESIAESIAESIAESuBsBCt67oaVhEiABEiABEiABEiCBZyBAwfsMo0AfSIAESIAESIAESIAE7kaAgvduaGmYBEiABEiABEiABEjgGQhQ8D7DKNAHEiABEiABEiABEiCBuxGg4L0bWhomARIgARIgARIgARJ4BgIUvM8wCvSBBEiABEiABEiABEjgbgQoeO+GloZJgARIgARIgARIgASegQAF7zOMAn0gARIgARIgARIgARK4GwEK3ruhpWESIAESIAESIAESIIFnIEDB+wyjQB9IgARIgARIgARIgATuRoCC925oaZgESIAESIAESIAESOAZCFDwPsMo0AcSIAESIAESIAESIIG7EaDgvRtaGiYBEiABEiABEiABEngGAhS8zzAK9IEESIAESIAESIAESOBuBCh474aWhkmABEiABEiABEiABJ6BAAXvM4wCfSABEiABEiABEiABErgbAQreu6GlYRIgARIgARIgARIggWcgQMH7DKNAH0iABEiABEiABEiABO5GgIL3bmhpmARIgARIgARIgARI4BkIUPA+wyjQBxIgARIgARIgARIggbsRoOC9G1oaJgESIAESIAESIAESeAYC/x+O8CDTgXWeCgAAAABJRU5ErkJggg==" alt="" />

代码例如以下:

package huawei;

import java.util.Scanner;

public final class Demo {

	// 功能:获取两个整数的最大公约数
// 输入:两个整数
// 返回:最大公约数
public static long getMaxDivisor(long lFirstInput, long lSecondInput) {
while (lSecondInput % lFirstInput != 0) {
/**
* 运用递归调用求余值作min 前min作max直求余值0止结束循环
*/
int temp = (int) (lSecondInput % lFirstInput);
lSecondInput = lFirstInput;
lFirstInput = temp;
}
return lFirstInput;
} // 功能:获取两个整数的最小公倍数
// 输入:两个整数
// 返回:最小公倍数
public static long getMinMultiple(long lFirstInput, long lSecondInput) { return lFirstInput * lSecondInput / getMaxDivisor(lFirstInput, lSecondInput);
} public static void main(String args[]) {
int first, second;
Scanner cin = new Scanner(System.in);
System.out.println("int first:");
first = cin.nextInt();
System.out.println("int second:");
second = cin.nextInt(); System.out.println(getMaxDivisor(first, second));
System.out.println(getMinMultiple(first, second)); } }

上机题目(0基础)-计算两个正整数的最大公约数和最小公倍数(Java)的更多相关文章

  1. 【C/C++】计算两个整数的最大公约数和最小公倍数

    算法一 任何>1的整数都可以写成一个或多个素数因子乘积的形式,且素数乘积因子以非递减序出现. 则整数x,y可以分别标记为:x=p1x1p2x2...pmxm y=p1y1p2y2...pmym ...

  2. C++中求两个正整数的最大公约数和最小公倍数

    最大公约数直接用辗转相除法,最小公倍数就是两个数的乘积除以最大公约数 #include<iostream> using namespace std; int gys(int x,int y ...

  3. C语言实验报告(五) 两个正整数的最大公约数

    编程实现求两个正整数的最大公约数,要求计算最大公约数用函数fun(int a,int b)实现. #include<stdio.h>void main(){  int n,a,b;  in ...

  4. java 利用辗除法求两个整数的最大公约数和最小公倍数

    题目:输入两个正整数m和n,求其最大公约数和最小公倍数. 程序分析:利用辗除法. package Studytest; import java.util.Scanner; public class P ...

  5. c 求两个整数的最大公约数和最小公倍数

    //求最大公约数是用辗转相除法,最小公倍数是根据公式 m,n 的 最大公约数* m,n最小公倍数 = m*n 来计算 #include<stdio.h> //将两个整数升序排列 void ...

  6. 上机题目(中级)- 两个超级大的整数相加相减 (Java)

    代码例如以下: public class AddSub { public static void main(String[] args) { String a="46328648326846 ...

  7. 计算两个日期之间的天数差C++/java

    1--Java 分析:调用java中Calendar类 int days(Date date1,Date date2){ Calendar cal = new Calendar.getInstance ...

  8. java常见面试题2:求出两个正整数的最大公约数

    概念: 最大公约数:两个整数共有因子中最大的一个 方法一: 如果两个数相等,则最大公约数为它本身,两个数不等,则用两个数依次除 两个数中最小的一个到 1,直到找到同时能被两个数除尽的那个数 代码清单: ...

  9. 【C语言】写一个函数,并调用该函数求两个整数的最大公约数和最小公倍数

    程序分析: 在数学中,两个数的最小公倍数=两个数的乘积/两数的最大公约数. 求两个数的最大公约数,运用辗转相除法:已知两个整数M和N,假定M>N,则求M%N. 如果余数为0,则N即为所求:如果余 ...

随机推荐

  1. 【Web API系列教程】3.4 — 实战:处理数据(处理实体关系)

    前言 本部分描写叙述了EF怎样载入相关实体的细节,而且怎样在你的模型类中处理环形导航属性.(本部分预备了背景知识,而这不是完毕这个教程所必须的.你也能够跳到第五节) 预载入和延迟载入 预载入和延迟载入 ...

  2. [Ionic] Align and Size Text with Ionic CSS Utilities

    The Ionic framework provides several built-in CSS Utilities or directives that you can leverage when ...

  3. ARP协议(3)ARP编程--winpcap&amp;vs2012配置

    好.之前说了那么多.最终到了,我们能够操刀的时候了. 在对ARP协议编程前.我们必需要能控制网络适配器(网卡).这个部分就是驱动! "我们要编写网卡驱动?",对,可是,至少我们现阶 ...

  4. 一个关于Class的小点

    public 是公有 private 是私有 没有写就是private

  5. JTCalendar

    JTCalendar是一款简易使用而且能够自己定义事件的日历.包含圈点标识的颜色等都能够自己定义.demo中还提供了转换日历模式的样例. 效果图: " style="margin: ...

  6. 文件重命名之动态改动ListView里指定Item中的组件属性

    在Android实际开发过程中常常会遇到,改动ListView中某一项的值.怎样达到这一目的呢? 方法主要有两种: 第一种方式:当ListView中某一项的值发生变化之后,又一次载入数据已达到更新Li ...

  7. [C++设计模式] strategy 策略模式

    依照陈硕老师的观点.c++里有面向过程编程.面向对象编程,基于对象编程(面向接口编程)和泛型编程.四种思路都各有其适用场景. 面向过程编程是沿袭C的结构化编程思路,OOP是C++的核心,也是现代高级编 ...

  8. Unity3D脚本编程--基本概念

    1. 简单介绍 在Unity3D中,游戏对象(GameObject)的行为是由附加其上的脚本来控制的,游戏开发人员通过编写脚本来控制游戏中的全部对象,如移动Camera等. GameObject能够被 ...

  9. UESTC--1265--宝贵资源(简单数学)

    宝贵资源 Time Limit: 1000MS   Memory Limit: 65535KB   64bit IO Format: %lld & %llu Submit Status Des ...

  10. SQL语句之transaction

    http://blog.csdn.net/xbc1213/article/details/50169935 案例: begin tran --定义一个存储错误新的变量 执行一条语句 set @sumE ...