Twilight Sparkle was playing Ludo with her friends Rainbow Dash, Apple Jack and Flutter Shy. But she kept losing. Having returned to the castle, Twilight Sparkle became interested in the dice that were used in the game.

The dice has m faces: the first face of the dice contains a dot, the second one contains two dots, and so on, them-th face containsm dots.
Twilight Sparkle is sure that when the dice is tossed, each face appears with probability. Also she knows that each toss is independent
from others. Help her to calculate the expected maximum number of dots she could get after tossing the dicen times.

Input

A single line contains two integers m andn (1 ≤ m, n ≤ 105).

Output

Output a single real number corresponding to the expected maximum. The answer will be considered correct if its relative or absolute error doesn't exceed10  - 4.

Sample Input

Input
6 1
Output
3.500000000000
Input
6 3
Output
4.958333333333
Input
2 2
Output
1.750000000000

Hint

Consider the third test example. If you've made two tosses:

  1. You can get 1 in the first toss, and 2 in the second. Maximum equals to 2.
  2. You can get 1 in the first toss, and 1 in the second. Maximum equals to 1.
  3. You can get 2 in the first toss, and 1 in the second. Maximum equals to 2.
  4. You can get 2 in the first toss, and 2 in the second. Maximum equals to 2.

The probability of each outcome is 0.25, that is expectation equals to:

题目大意:

求出最大点数的期望(这两个字被平均取代后瞬间没有高尚感- -)。

思路:

若有5个的6面骰子出现最大点为1的次数为1^5,出现最大点为2的的次数为2^5-1^5,以此来推出最大点出现的次数为i^5-(i-1)^5;

求出最大值得期望,由演示样例能够得到 p = ( (1^n-0^n)*1 + (2^n-1^n)*2 。

。 +(m^n - (m-1)^n)*m ) / m^n ;将m^n带入
终于得到 p = m - ((m-1)/m)^n + ((m-2)/m)^n。

。。+(1/m)^n ;

#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<cmath>
#include<map>
#include<queue>
#include<algorithm>
#define LL long long
int a[1010];
using namespace std;
int main()
{
    LL s;
    int i,j,n,m,k,inr,x;
    double sum;
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        sum=0;
        for(i=1;i<=m;i++)
        {
            sum+=i*(pow(i*1.0/m,n)-pow((i-1)*1.0/m,n));<span id="transmark"></span>
        }
        printf("%.12lf\n",sum);
    }
}

CodeForces 453A的更多相关文章

  1. CodeForces - 453A Little Pony and Expected Maximum

    http://codeforces.com/problemset/problem/453/A 题目大意: 给定一个m面的筛子,求掷n次后,得到的最大的点数的期望 题解 设f[i]表示掷出 <= ...

  2. CodeForces 453A 概率题

    Description Twilight Sparkle was playing Ludo with her friends Rainbow Dash, Apple Jack and Flutter ...

  3. 嘴巴题9 Codeforces 453A. Little Pony and Expected Maximum

    A. Little Pony and Expected Maximum time limit per test 1 second memory limit per test 256 megabytes ...

  4. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  5. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  6. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  7. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

  8. CodeForces - 662A Gambling Nim

    http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...

  9. CodeForces - 274B Zero Tree

    http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...

随机推荐

  1. [JZOJ]100047. 【NOIP2017提高A组模拟7.14】基因变异

    21 世纪是生物学的世纪,以遗传与进化为代表的现代生物理论越来越多的 进入了我们的视野. 如同大家所熟知的,基因是遗传因子,它记录了生命的基本构造和性能. 因此生物进化与基因的变异息息相关,考察基因变 ...

  2. Python 绘图与可视化 matplotlib(上)

    参考链接:https://www.cnblogs.com/dudududu/p/9149762.html 更详细的:https://www.cnblogs.com/zhizhan/p/5615947. ...

  3. NYIST 489 哭泣天使

    哭泣天使时间限制:1000 ms | 内存限制:65535 KB难度:5 描述Doctor Who乘着Tardis带着Amy来到了一个星球,一开Tadis大门,发现这个星球上有个壮观的石像群,全是一些 ...

  4. WinServer-PowerShell基础

    命令的参数: [-name] 这个参数必须要有,string表示name参数接受什么样的实参,<>表示参数可以接受的实参类型,通常出现set get add都会伴随着必须参数 [-name ...

  5. ASP.NET-Session cooike

    Application .Cookie和 Session 两种会话有什么不同 答:Application是用来存取整个网站全局的信息,而Session是用来存取与具体某个访问者关联的信息, Sessi ...

  6. aliyun Ubuntu 14.04 64bit OpenJDK Tomcat7 install

    my work environment: aliyun Ubuntu 14.04 64位 first phase:apt-get update    (it is very important,oth ...

  7. JDK+JDBC+MySQL实例及注意事项

    by qx.zhong Hangzhou 29 Jun 2014 开发环境 OS:  Win8.1 x64 JDK: 1.8 SE DB:  MySQL 5.5  Lib:  mysql-connec ...

  8. ZOJ 3494 BCD Code (AC自己主动机 + 数位DP)

    题目链接:BCD Code 解析:n个病毒串.问给定区间上有多少个转换成BCD码后不包括病毒串的数. 很奇妙的题目. . 经典的 AC自己主动机 + 数位DP 的题目. 首先使用AC自己主动机,得到b ...

  9. ORA-01733: virtual column not allowed here

    基表: hr.tt  scott.tt  视图1: 基于 hr.tt  union all  scott.tt ---> scott.ttt  视图2: 基于 视图1->scott.ttt ...

  10. Excel中将字符串中从右起第n个指定字符替换的方法

    比如你想把www.baidu.com.cn中的倒数第二个”.”替换成@,则可以用: =SUBSTITUTE(A1,".","@",LEN(A1)-LEN(SUB ...