CodeForces 453A
Twilight Sparkle was playing Ludo with her friends Rainbow Dash, Apple Jack and Flutter Shy. But she kept losing. Having returned to the castle, Twilight Sparkle became interested in the dice that were used in the game.
The dice has m faces: the first face of the dice contains a dot, the second one contains two dots, and so on, them-th face containsm dots.
Twilight Sparkle is sure that when the dice is tossed, each face appears with probability. Also she knows that each toss is independent
from others. Help her to calculate the expected maximum number of dots she could get after tossing the dicen times.
Input
A single line contains two integers m andn (1 ≤ m, n ≤ 105).
Output
Output a single real number corresponding to the expected maximum. The answer will be considered correct if its relative or absolute error doesn't exceed10 - 4.
Sample Input
6 1
3.500000000000
6 3
4.958333333333
2 2
1.750000000000
Hint
Consider the third test example. If you've made two tosses:
- You can get 1 in the first toss, and 2 in the second. Maximum equals to 2.
- You can get 1 in the first toss, and 1 in the second. Maximum equals to 1.
- You can get 2 in the first toss, and 1 in the second. Maximum equals to 2.
- You can get 2 in the first toss, and 2 in the second. Maximum equals to 2.
The probability of each outcome is 0.25, that is expectation equals to:
题目大意:
求出最大点数的期望(这两个字被平均取代后瞬间没有高尚感- -)。
思路:
若有5个的6面骰子出现最大点为1的次数为1^5,出现最大点为2的的次数为2^5-1^5,以此来推出最大点出现的次数为i^5-(i-1)^5;
求出最大值得期望,由演示样例能够得到 p = ( (1^n-0^n)*1 + (2^n-1^n)*2 。
。
。 +(m^n - (m-1)^n)*m ) / m^n ;将m^n带入
终于得到 p = m - ((m-1)/m)^n + ((m-2)/m)^n。
。。+(1/m)^n ;
#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<cmath>
#include<map>
#include<queue>
#include<algorithm>
#define LL long long
int a[1010];
using namespace std;
int main()
{
LL s;
int i,j,n,m,k,inr,x;
double sum;
while(scanf("%d%d",&m,&n)!=EOF)
{
sum=0;
for(i=1;i<=m;i++)
{
sum+=i*(pow(i*1.0/m,n)-pow((i-1)*1.0/m,n));<span id="transmark"></span>
}
printf("%.12lf\n",sum);
}
}
CodeForces 453A的更多相关文章
- CodeForces - 453A Little Pony and Expected Maximum
http://codeforces.com/problemset/problem/453/A 题目大意: 给定一个m面的筛子,求掷n次后,得到的最大的点数的期望 题解 设f[i]表示掷出 <= ...
- CodeForces 453A 概率题
Description Twilight Sparkle was playing Ludo with her friends Rainbow Dash, Apple Jack and Flutter ...
- 嘴巴题9 Codeforces 453A. Little Pony and Expected Maximum
A. Little Pony and Expected Maximum time limit per test 1 second memory limit per test 256 megabytes ...
- python爬虫学习(5) —— 扒一下codeforces题面
上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
- 【Codeforces 738A】Interview with Oleg
http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
- CodeForces - 274B Zero Tree
http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...
随机推荐
- PHP实现的毫秒定时器,同时解决进程不重复堆积
定时器任务,在WEB应用比较常见,如何使用PHP实现定时器任务,大致有两种方案:1)使用Crontab命令,写一个shell脚本,在脚本中调用PHP文件,然后定期执行该脚本:2)配合使用ignore_ ...
- Vue.js 笔记之 img src
固定路径(原始html) index.html如下,其中,引号""里面就是图片的路径地址 ```<img src="./assets/1.png"> ...
- POI实现Excel2003插入多张图片
POI的操作Excel时,不可避免有操作图片的处理.怎么插入图片呢?网上也有不少介绍. 下面的代码是向Excel中插入多张图片的例子: public static void main(String[] ...
- 高级函数-decode
decode(字段或计算表达式, 条件值1,结果值1, 条件值2,结果值2[,默认值] ) if(字段或计算表达式 == 条件值1 ...
- 洛谷——T P2136 拉近距离
https://www.luogu.org/problem/show?pid=2136 题目背景 我是源点,你是终点.我们之间有负权环. ——小明 题目描述 在小明和小红的生活中,有N个关键的节点.有 ...
- C++11时间具体解释
转载请注明出处:http://blog.csdn.net/luotuo44/article/details/46854229 C++ 11添加了三个与时间相关的类型:时间段.时钟.时间点. 以史为鉴 ...
- 匿名訪问之(一)web application级别
假设用SharePoint做一个对外开放的公共站点,比方公司展示站点.那么浏览站点的人不须要注冊和登陆.就应该能看到内容.这个时候就须要对站点开启匿名訪问. SharePoint的匿名訪问是从上而下的 ...
- 算法 - 求一个数组的最长递减子序列(C++)
//************************************************************************************************** ...
- elasticsearch的javaAPI之index
Index API 原文:http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/index_.html ...
- VMware虚拟机的CentOS7安装Nginx后本机用CentOS的IP地址无法访问
因为CentOS7的默认防火墙改成了Firewall,不再使用iptables为默认防火墙了 所以需要使用以下命令添加80端口 firewall-cmd --zone=public --add-por ...