题目描述

小林是个程序媛,不可避免地康娜对这种人类的“魔法”产生了浓厚的兴趣,于是小林开始教她OI。

今天康娜学习了一种叫做线段树的神奇魔法,这种魔法可以维护一段区间的信息,是非常厉害的东西。康娜试着写了一棵维护区间和的线段树。由于她不会打标记,因此所有的区间加操作她都是暴力修改的。具体的代码如下:

struct Segment_Tree{
#define lson (o<<1)
#define rson (o<<1|1)
int sumv[N<<2],minv[N<<2];
inline void pushup(int o){sumv[o]=sumv[lson]+sumv[rson];}
inline void build(int o,int l,int r){
if(l==r){sumv[o]=a[l];return;}
int mid=(l+r)>>1;
build(lson,l,mid);build(rson,mid+1,r);
pushup(o);
}
inline void change(int o,int l,int r,int q,int v){
if(l==r){sumv[o]+=v;return;}
int mid=(l+r)>>1;
if(q<=mid)change(lson,l,mid,q,v);
else change(rson,mid+1,r,q,v);
pushup(o);
}
}T;

在修改时,她会这么写:

for(int i=l;i<=r;i++)T.change(1,1,n,i,addv);

显然,这棵线段树每个节点有一个值,为该节点管辖区间的区间和。

康娜是个爱思考的孩子,于是她突然想到了一个问题:

如果每次在线段树区间加操作做完后,从根节点开始等概率的选择一个子节点进入,直到进入叶子结点为止,将一路经过的节点权值累加,最后能得到的期望值是多少?

康娜每次会给你一个值 qwqqwq ,保证你求出的概率乘上 qwqqwq 是一个整数。

这个问题太简单了,以至于聪明的康娜一下子就秒了。

现在她想问问你,您会不会做这个题呢?

输入输出格式

输入格式:

第一行整数 n,m,qwqn,m,qwq 表示线段树维护的原序列的长度,询问次数,分母。

第二行 nn 个数,表示原序列。

接下来 mm 行,每行三个数 l,r,xl,r,x 表示对区间[l,r][l,r] 加上 xx

输出格式:

共 mm 行,表示期望的权值和乘上qwq结果。

输入输出样例

输入样例#1:

8 2 1
1 2 3 4 5 6 7 8
1 3 4
1 8 2
输出样例#1:

90
120

说明

对于30%的数据,保证 1 \leq n,m \leq 1001≤n,m≤100

对于70%的数据,保证 1 \leq n,m, \leq 10^{5}1≤n,m,≤10​5​​

对于100%的数据,保证1 \leq n,m \leq 10^61≤n,m≤10​6​​

-1000 \leq a_i,x \leq 1000−1000≤a​i​​,x≤1000

思路:首先,考虑每一次增加的x可以为期望增加多少 
设一条路路径和为sum 
该叶节点的期望为sum/2^(dep-1) 
但每个叶子的dep不一定相同 
所以可以给sum乘以2^(maxdep-dep),然后就可以统一除以2^(maxdep-1) 
先O(n)把叶节点的sum和求出来 
修改的话维护每一个数的贡献,用前缀和数组 
修改时ans+=(s[r]-s[l-1])*x。

错因:本题卡常

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define MAXN 1000005
using namespace std;
int deep[MAXN];
int n,m,maxdeep;
long long QwQ,ans,y;
long long sum[MAXN],tree[MAXN*];
void read(long long &x){
x=;int f=; register char c=getchar();
while(c>''||c<''){ if(c=='-') f=-;c=getchar();}
while(c>=''&&c<=''){ x=x*+c-'';c=getchar();}x*=f;
}
void build(int now,int l,int r,int de){
if(l==r){
read(tree[now]);
deep[l]=de;
maxdeep=max(maxdeep,de);
return ;
}
int mid=(l+r)/;
build(now*,l,mid,de+);
build(now*+,mid+,r,de+);
tree[now]=tree[now*]+tree[now*+];
}
long long query(int now,int l,int r,int de,long long s){
if(l==r)
return (1ll<<de)*(s+tree[now]);
int mid=(l+r)/;
if(r<=mid) return query(now*,l,r,de-,s+tree[now]);
else if(l>mid) return query(now*+,l,r,de-,s+tree[now]);
else return query(now*,l,mid,de-,s+tree[now])+query(now*+,mid+,r,de-,s+tree[now]);
}
int main(){
scanf("%d%d%d",&n,&m,&QwQ);
build(,,n,);
ans=query(,,n,maxdeep-,);
for(int i=;i<=n;i++)
sum[i]=sum[i-]+(((1ll<<deep[i])-)<<(maxdeep-deep[i]));
y=(1ll<<maxdeep-);
long long p= __gcd(y,QwQ);
QwQ/=p;y/=p;
for(int i=;i<=m;i++){
long long l,r,x;
read(l);read(r);read(x);
ans+=(sum[r]-sum[l-])*x;
printf("%lld\n",ans*QwQ/y);
}
}

洛谷 P3924 康娜的线段树的更多相关文章

  1. 洛谷 P3924 康娜的线段树 解题报告

    P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的"魔法"产生了浓厚的兴趣,于是小林开始教她\(OI\). 今天康娜学习了一种叫做线段树的神奇魔法,这种 ...

  2. 洛谷P3924 康娜的线段树(期望 前缀和)

    题意 题目链接 Sol 思路就是根据期望的线性性直接拿前缀和算贡献.. 这题输出的时候是不需要约分的qwq 如果你和我一样为了AC不追求效率的话直接#define int __int128就行了.. ...

  3. P3924 康娜的线段树(期望)

    P3924 康娜的线段树 看起来$O(nlogn)$可过其实由于巨大常数是无法通过的 $O(nlogn)$:70pts 我们手玩样例发现 线段树上某个节点的期望值$f[o]=(f[lc]+f[rc]) ...

  4. P3924 康娜的线段树

    P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的"魔法"产生了浓厚的兴趣,于是小林开始教她OI. 今天康娜学习了一种叫做线段树的神奇魔法,这种魔法可以 ...

  5. luogu P3924 康娜的线段树

    题面传送门 我们可以画图找规律 这里没图,要看图可以去看M_sea dalao的题解(逃 可以发现单个节点\(i\)对答案的贡献为该节点的点权\(*\frac{1}{2^{dep_i}}\)(\(de ...

  6. 洛谷 P3373 【模板】线段树 2

    洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一 ...

  7. 洛谷P3372 【模板】线段树 1

    P3372 [模板]线段树 1 153通过 525提交 题目提供者HansBug 标签 难度普及+/提高 提交  讨论  题解 最新讨论 [模板]线段树1(AAAAAAAAA- [模板]线段树1 洛谷 ...

  8. 洛谷P4891 序列(势能线段树)

    洛谷题目传送门 闲话 考场上一眼看出这是个毒瘤线段树准备杠题,发现实在太难调了,被各路神犇虐哭qwq 考后看到各种优雅的暴力AC......宝宝心里苦qwq 思路分析 题面里面是一堆乱七八糟的限制和性 ...

  9. 洛谷 P2574 XOR的艺术(线段树 区间异或 区间求和)

    To 洛谷.2574 XOR的艺术 题目描述 AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个伤害串为长度为n的 ...

随机推荐

  1. javaScript将string转换成array,并将汉字按汉语拼音排序方法

    亲测,代码如下: var str = '中华人民共和国民主富强': var arr = str.split("");//字符串装换数组方法一 //arr = str.replace ...

  2. 【codeforces 757E】Bash Plays with Functions

    [题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n] ...

  3. Ubuntu(Linux Mint):sudo apt-get upgrade升级失败

    Ubuntu上进行sudo apt-get upgrade后出现异常,升级失败. 异常信息如下: E: dpkg was interrupted, you must manually run 'dpk ...

  4. glove入门实战

    前两天怒刷微博,突然发现了刘知远老师分享的微博,顿时眼前一惊.原Po例如以下: http://weibo.com/1464484735/BhbLD70wa 因为我眼下的研究方向是word2vec.暗自 ...

  5. 一分钟了解Android横竖屏 mdpi hdpi xhdpi xxhdpi xxxhdpi

    DPI:每英寸像素数 简单的屏幕分辨率计算方法: DisplayMetrics metrics = this.getResources().getDisplayMetrics(); float den ...

  6. sqlite学习笔记9:C语言中使用sqlite之插入数据

    前面创建了一张表,如今给他插入一些数据.插入数据跟创建表差点儿相同,不过SQL语言不一样而已,完整代码例如以下: #include <stdio.h> #include <stdli ...

  7. SQL Server: Windows Firewall with Advanced Security

    SQL Database Engine: TCP 1433 & UDP 1434 SQL Analysis Service: TCP 2383 (2382 if named instance) ...

  8. oracle-常见的执行计划(一)

    一.表访问方式 CBO基础概念中有讲到,访问表的方式有两种:全表扫描和ROWID扫描. 全表扫描的执行计划:TABLE ACCESS FULL ROWID扫描对应执行计划:TABLE ACCESS B ...

  9. Servlet学习(五)——通过response设置响应体及中文乱码问题

    1.响应体设置文本 PrintWriter writer=response.getWriter(); 获得字符流,通过字符流的write(String s)方法可以将字符串设置到response 缓冲 ...

  10. 【原创】websphere部署war包报错

    应用程序在Tomcat上运行一切正常,但在websphere上部署时报以下错误:错误 500 处理请求时发生一个错误: /admin/upload.do 消息: WEB-INF/web.xml 详细错 ...