leetCode-4-Median of Two Sorted Arrays-Hard

descrition

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

example 1

nums1 = [1, 3]
nums2 = [2] The median is 2.0

example 2

nums1 = [1, 2]
nums2 = [3, 4] The median is (2 + 3)/2 = 2.5

解析

注意题目对时间复杂度的要求:O(log (m+n)),在加上数组有序的条件,此处应该联想到二分搜索的优化。那要如何用呢?看下面分析。(也可以参考 leetcode 中的 solution,解释得也很好)

定义函数接口:

double findMedianSortedArrays(vector<int>& A, vector<int>& B)

即两个数组 A, B,假设大小分别为 m 和 n

将数组 A 根据任意位置 i 分成左右两部分,同理 B 根据任意位置 j 也分成左右两部分,如下:

left_part                | right_part
A[0], A[1], ..., A[i-1] | A[i], A[i+1], ... , A[m]
B[0], B[1], ..., B[j-1] | B[j], B[j+1], ... , B[n]

由中位数的定义以及数组有序的条件,我们希望以上划分满足:

len(left_part) = len(right_part)
==> i+j = m-i + n-j (or: i+j = m-i + n-j + 1 (奇数的情况,将多的一个放到左边))
==> j = (m+n+1)/2 - i, i=[0,m]
max(left_part) <= min(right_part) ==> A[i-1] <= B[j] && B[j-1] <= A[i]

由此我们只需要在有序数组 A 上进行二分查找,确定 i 的位置,使得以上条件满足即可找到合适的划分。在此基础上我们可以根据划分边界求得 median。

初始条件:imin = 0, imax = m;
当 imin <= imax 时候的一次迭代:
i = (imin + imax) / 2
j = (m+n+1)/2 - i
// 此处讨论暂时不考虑边界情况,即假设 i 和 j 都合法
// 只可能出现以下几种情况:
(1) A[i-1] <= B[j] && B[j-1] <= A[i]
// 划分满足要求,可以停止循环
(2) A[i-1] > B[j]
// A[i-1] 太大,也就是我们要想办法调整 i 的值使得 A[i-1] <= B[j] 成立
// 这个时候如果我们增大 i,只会使得 A[i-1] 更大 (因为数组是非递减有序的)
// 因此我们只能通过减小 i,尝试找到更小的 A[i-1],因此作出如下调整
imax = i-1
(3) B[j-1] > A[i]
// B[j-1] 太大,同理我们应该减小 j
// 从另一个角度,减小 j 就相当于增大 i,因此我们作出以下调整
imin = i+1

几个细节:

  • m <= n 必须成立。因为 j = (m+n+1)/2 - i,如果 m>n,那么 j 将有可能为负数。因此在程序的开始进行检查。
  • 边界条件的讨论。当 i0, j0, im, jn 时,A[i-1], B[j-1], A[i], B[j] 都是不成立的。如果 i 和 j 都满足要求时,我们需要检查 A[i-1] <= B[j] && B[j-1] <= A[i] 是否成立,那么当 i 和 j 到达边界条件时,我们也就不需要检查其中的某一个条件,比如当 i == 0 时, A 数组的左边为空,我们就不需要检查 A[i-1] <= B[j] 这个条件。(参看代码)

code


#include <iostream>
#include <vector>
#include <algorithm> using namespace std; class Solution{
public:
double findMedianSortedArrays(vector<int>& A, vector<int>& B){
// insure the size of A is less than and equal to the size of B
if(A.size() > B.size())
swap(A, B);
int m = A.size();
int n = B.size();
// m <= n // when m+n is odd, the follow equation will insure the median
// will be assined into left part.
int lenLeft = (m+n+1) / 2; // binary search
int imin = 0, imax = m;
while(imin <= imax){
int i = (imin + imax) / 2;
int j = lenLeft - i;
if( i>0 && A[i-1] > B[j]){
// A[i-1] too large, decreasing i
// i > 0 ==> j<n, because j = (m+n+1) / 2 - i < (m+n+1) / 2 < 2n+1/2 < n
imax = i-1;
}else if ( i<m && B[j-1] > A[i]){
// A[i] too small, increasing i
// i < m ==> j>0, because j = (m+n+1) / 2 - i > (m+n+1) / 2 - m > (2m+1)/2 - m > 0
imin = i+1;
}else{
// perfit
int maxLeft = 0;
if(i == 0){
maxLeft = B[j-1];
}else if (j == 0){
maxLeft = A[i-1];
}else{
maxLeft = max(B[j-1], A[i-1]);
} if( ((n+m)&1) == 1) // odd
return maxLeft; int minRight = 0;
if(i == m){
minRight = B[j];
}else if (j == n){
minRight = A[i];
}else{
minRight = min(B[j], A[i]);
} return (maxLeft + minRight)*1.0 / 2.0;
}
} return 0.0;
}
}; int main()
{
return 0;
}

[array] leetCode-4-Median of Two Sorted Arrays-Hard的更多相关文章

  1. 【算法之美】求解两个有序数组的中位数 — leetcode 4. Median of Two Sorted Arrays

    一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/ ...

  2. LeetCode(3) || Median of Two Sorted Arrays

    LeetCode(3) || Median of Two Sorted Arrays 题记 之前做了3题,感觉难度一般,没想到突然来了这道比较难的,星期六花了一天的时间才做完,可见以前基础太差了. 题 ...

  3. LeetCode 4 Median of Two Sorted Arrays (两个数组的mid值)

    题目来源:https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 an ...

  4. Leetcode 4. Median of Two Sorted Arrays(二分)

    4. Median of Two Sorted Arrays 题目链接:https://leetcode.com/problems/median-of-two-sorted-arrays/ Descr ...

  5. LeetCode 4. Median of Two Sorted Arrays & 归并排序

    Median of Two Sorted Arrays 搜索时间复杂度的时候,看到归并排序比较适合这个题目.中位数直接取即可,所以重点是排序. 再来看看治阶段,我们需要将两个已经有序的子序列合并成一个 ...

  6. 第三周 Leetcode 4. Median of Two Sorted Arrays (HARD)

    4. Median of Two Sorted Arrays 给定两个有序的整数序列.求中位数,要求复杂度为对数级别. 通常的思路,我们二分搜索中位数,对某个序列里的某个数 我们可以在对数时间内通过二 ...

  7. Leetcode 4. Median of Two Sorted Arrays(中位数+二分答案+递归)

    4. Median of Two Sorted Arrays Hard There are two sorted arrays nums1 and nums2 of size m and n resp ...

  8. LeetCode 004 Median of Two Sorted Arrays

    题目描述:Median of Two Sorted Arrays There are two sorted arrays A and B of size m and n respectively. F ...

  9. leetcode 4. Median of Two Sorted Arrays

    https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 and num ...

  10. leetcode之 median of two sorted arrays

    这是我做的第二个leetcode题目,一开始以为和第一个一样很简单,但是做的过程中才发现这个题目非常难,给人一种“刚上战场就踩上地雷挂掉了”的感觉.后来搜了一下leetcode的难度分布表(leetc ...

随机推荐

  1. Elasticsearch 数据搜索

    ES即简单又复杂,你可以快速的实现全文检索,又需要了解复杂的REST API.本篇就通过一些简单的搜索命令,帮助你理解ES的相关应用.虽然不能让你理解ES的原理设计,但是可以帮助你理解ES,探寻更多的 ...

  2. python web框架之Tornado

    说Tornado之前分享几个前端不错的网站: -- Bootstrap http://www.bootcss.com/ -- Font Awesome http://fontawesome.io/ - ...

  3. mysql导出数据库和恢复数据库代码

    mysql导出数据库和备份数据库 用mysqldump 命令行 命令格式 mysqldump -u 用户名 -p  数据库名 > 数据库名.sql 范例: mysqldump -uroot -p ...

  4. Jquery Ajax和getJSON获取后台普通Json数据和层级Json数据解析

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  5. [解读REST] 1.REST的起源

    0. 世界上第一个网站 1990年12月20日,这一天对于现在的互联网来说意义非凡.欧洲核子研究组织(CREN)的科学家Tim Berners-Lee在一台NeXT电脑上启动了世界上的第一个网站(当然 ...

  6. Hadoop2.7.3集群搭建

    hadoop2.0已经发布了稳定版本了,增加了很多特性,比如HDFS HA.YARN等.最新的hadoop-2.4.1又增加了YARN HA   注意:apache提供的hadoop-2.4.1的安装 ...

  7. .net Mvc框架原理

    .net Mvc框架原理 本文只是简要说明原理,学习后的总结. 1.当一个Http请求发送后会被URLRoutingModule拦截(这时候也就是正式进入管道,下章会讲管道事件) 2.这时根据Isap ...

  8. windows server 2003安装 SQL server 2008r2 版本的步骤

    大家好,这里介绍的是在系统 windows server 2003安装 SQL server 20008r2版本,如有雷同,敬请谅解,如果错误,欢迎大家多提意见 1.下载好安装包解压以后,就会出现如下 ...

  9. (转)十分钟入门pandas

    本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook . 习 ...

  10. Hibernate逆向代码问题

    问题描述 使用hibernate tools 插件生成pojo代码非常方便快捷,但是我今天使用的时候发现,在eclips安装jboss插件后,找不到Hibernate Code Generation ...