C. Kyoya and Colored Balls(Codeforces Round #309 (Div. 2))
Kyoya Ootori has a bag with n colored balls that are colored with k different
colors. The colors are labeled from 1 to k.
Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color ibefore
drawing the last ball of color i + 1 for all i from 1 to k - 1.
Now he wonders how many different ways this can happen.
The first line of input will have one integer k (1 ≤ k ≤ 1000)
the number of colors.
Then, k lines will follow. The i-th
line will contain ci,
the number of balls of the i-th color (1 ≤ ci ≤ 1000).
The total number of balls doesn't exceed 1000.
A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.
3
2
2
1
3
4
1
2
3
4
1680
In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:
1 2 1 2 3
1 1 2 2 3
2 1 1 2 3
题意:n种不同颜色的球。有k[n]个,要求每种颜色的球的最后一个的相对初始状态(球的种类)的位置不变;问有多少种组合
思路:定最后一个球,其它的球(同样的颜色)在前面任选,之后再定最后另外一种颜色的球<放在剩下空中离最后一个位置近期的地方>,然后剩下的任选。。 。以此类推。
题目链接:http://codeforces.com/contest/554/problem/C
转载请注明出处:寻找&星空の孩子
用了个费马小定理优化了下。也不可不优化。(a=1 mod (p-1),gcd(a,p)=1)
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL long long
const LL mod = 1000000007;
LL n;
LL a[1005];
LL fac[1000005]; LL ppow(LL a,LL b)
{
LL c=1;
while(b)
{
if(b&1) c=c*a%mod;
b>>=1;
a=a*a%mod;
}
return c;
} LL work(LL m,LL i)
{
return ((fac[m]%mod)*(ppow((fac[i]*fac[m-i])%mod,mod-2)%mod))%mod;
} int main()
{
LL i,j,k;
fac[0] = 1;
for(i = 1; i<1000005; i++)
fac[i]=(fac[i-1]*i)%mod;
LL ans = 1,sum = 0;
scanf("%I64d",&n);
for(i = 1; i<=n; i++)
{
scanf("%I64d",&a[i]);
sum+=a[i];
}
for(i = n; i>=1; i--)
{
ans*=work(sum-1,a[i]-1);
ans%=mod;
sum-=a[i];
}
printf("%I64d\n",ans); return 0;
}
C. Kyoya and Colored Balls(Codeforces Round #309 (Div. 2))的更多相关文章
- A. Kyoya and Photobooks(Codeforces Round #309 (Div. 2))
A. Kyoya and Photobooks Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He ...
- 找规律 Codeforces Round #309 (Div. 2) A. Kyoya and Photobooks
题目传送门 /* 找规律,水 */ #include <cstdio> #include <iostream> #include <algorithm> #incl ...
- 贪心 Codeforces Round #309 (Div. 2) B. Ohana Cleans Up
题目传送门 /* 题意:某几列的数字翻转,使得某些行全为1,求出最多能有几行 想了好久都没有思路,看了代码才知道不用蠢办法,匹配初始相同的行最多能有几对就好了,不必翻转 */ #include < ...
- Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls 排列组合
C. Kyoya and Colored Balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...
- Codeforces Round #309 (Div. 2)
A. Kyoya and Photobooks Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He ha ...
- Codeforces Round #309 (Div. 2)D
C. Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- Codeforces Round #309 (Div. 1)
A. Kyoya and Colored Balls 大意: 给定$k$种颜色的球, 第$i$种颜色有$c_i$个, 一个合法的排列方案满足最后一个第$i$种球的下一个球为第$i+1$种球, 求合法方 ...
- Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls
Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are ...
- Codeforces Round #309 (Div. 1) B. Kyoya and Permutation 构造
B. Kyoya and Permutation Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/ ...
随机推荐
- 特征提取方法: one-hot 和 IF-IDF
one-hot 和 IF-IDF是目前最为常见的用于提取文本特征的方法,本文主要介绍两种方法的思想以及优缺点. 1. one-hot 1.1 one-hot编码 什么是one-hot编码?one-ho ...
- HDU3045 Picnic Cows (斜率DP优化)(数形结合)
转自PomeCat: "DP的斜率优化--对不必要的状态量进行抛弃,对不优的状态量进行搁置,使得在常数时间内找到最优解成为可能.斜率优化依靠的是数形结合的思想,通过将每个阶段和状态的答案反映 ...
- Python 解LeetCode:Intersection of Two Arrays
最近,在用解决LeetCode问题的时候,做了349: Intersection of Two Arrays这个问题,就是求两个列表的交集.我这种弱鸡,第一种想法是把问题解决,而不是分析复杂度,于是写 ...
- C#中消息的工作流程
C#中的消息被Application类从应用程序消息队列中取出,然后分发到消息对应的窗体,窗体对象的第一个响应函数是对象中的protected override void WndProc(ref Sy ...
- web前端vertical-align的作用及对象详解
很多程序员知道web前端技术里的vertical-align是什么意思,但是对于vertical-align到底以什么为对齐标准却一知半解,今天我们就来说说web前端vertical-align. 1 ...
- ZedBoard开发板学习记录(一)之开发环境的搭建(Ubuntu16.04)以及运行HelloWorld程序的测试
ZedBoard开发板由PL和PS两大部分组成, 对PS操作,一般有两个办法: (1).在Windows系统上面,使用SDK新建C Project SDK自带编译环境,编译后自动产生elf文件.使用U ...
- 基础拾遗-----mongoDB操作
基础拾遗 基础拾遗------特性详解 基础拾遗------webservice详解 基础拾遗------redis详解 基础拾遗------反射详解 基础拾遗------委托详解 基础拾遗----- ...
- RocketMQ集群部署配置
目标,使用2台机器部署RocketMQ多Master多Slave模式,异步复制集群模式. 第一步,修改/etc/hosts文件 192.168.116.115 rocketmq1 192.168.11 ...
- 07深入理解Java线程池
之前面试baba系时遇到一个相对简单的多线程编程题,即"3个线程循环输出ADC",自己答的并不是很好,深感内疚,决定更加仔细的学习<并发编程的艺术>一书,到达掌握的强度 ...
- Chrome的开发者工具(Chrome Developer Tools)
Chrome的开发者工具(Chrome Developer Tools) 按F12 https://developer.chrome.com/devtools/index http://www.w3s ...