[bzoj1007][HNOI2008][水平可见直线] (斜率不等式)
Description
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
Input
第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi
Output
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input
-1 0
1 0
0 0
Sample Output
Solution
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAXN 50010
#define Eps 1e-18 using namespace std; struct Liyn{
int k, b, pos; void Push(int i) {scanf("%d%d", &k, &b); pos = i;} bool operator == (const Liyn &a)const {return k == a.k;} bool operator < (const Liyn &a)const {return k < a.k || (k == a.k && b > a.b);} double Cmp(const Liyn &a) {return double(a.b - b) / double(k - a.k);}
}L[MAXN], _pb[MAXN]; int n, top, ans[MAXN]; int main(){
scanf("%d", &n);
for(int i = ; i < n; i++)
L[i].Push(i);
sort(L, L + n);
n = unique(L, L + n) - L;
for(int i = ; i < n; i++){
while(top > && _pb[top - ].Cmp(_pb[top - ]) > L[i].Cmp(_pb[top - ]) - Eps)top--;
_pb[top++] = L[i];
}
for(int i = ; i < top; i++)
ans[i] = _pb[i].pos;
sort(ans, ans + top);
for(int i = ; i < top; i++)
printf("%d ", ans[i] + );
return ;
}
[bzoj1007][HNOI2008][水平可见直线] (斜率不等式)的更多相关文章
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- [BZOJ1007] [HNOI2008] 水平可见直线 (凸包)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x ...
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com
Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...
- bzoj1007[HNOI2008]水平可见直线
cycleke神说要用半平面交(其实他也用的凸包),把我吓了一跳,后来发现(看题解)其实可以先按斜率排序,再将最小的两条线入栈,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈.这是一个开口向 ...
- [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
随机推荐
- 计算机程序的思维逻辑 (29) - 剖析String
上节介绍了单个字符的封装类Character,本节介绍字符串类.字符串操作大概是计算机程序中最常见的操作了,Java中表示字符串的类是String,本节就来详细介绍String. 字符串的基本使用是比 ...
- Hibernate(6)—— 一对多 和 多对多关联关系映射(xml和注解)总结
俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习!涉及的知识点总结如下: One to Many 映射关系 多对一单向外键关联(XML/Annotation) 一对多单向外键关联(XM ...
- 如何写复杂的SQL
经常有人问我那非常复杂的sql是怎么写出来的,我一直不知道该怎么回答. 因为虽然我写这样的sql很顺手,可是我却不知道怎么告诉别人怎么写. 很多人将这个问题归结为天赋,我却不这么看,我 ...
- xss和csrf攻击
xss(cross site scripting)是一种最常用的网站攻击方式. 一.Html的实体编码 举个栗子:用户在评论区输入评论信息,然后再评论区显示.大概是这个样子: <span> ...
- 单链表的C++实现(采用模板类)
采用模板类实现的好处是,不用拘泥于特定的数据类型.就像活字印刷术,制定好模板,就可以批量印刷,比手抄要强多少倍! 此处不具体介绍泛型编程,还是着重叙述链表的定义和相关操作. 链表结构定义 定义单链表 ...
- 【中文分词】二阶隐马尔可夫模型2-HMM
在前一篇中介绍了用HMM做中文分词,对于未登录词(out-of-vocabulary, OOV)有良好的识别效果,但是缺点也十分明显--对于词典中的(in-vocabulary, IV)词却未能很好地 ...
- js正则表达式整理
一.数字类 数字:^[0-9]*$ 正数.负数.和小数:^(\-|\+)?\d+(\.\d+)?$ 零和非零开头的数字:^(0|[1-9][0-9]*)$ 非零开头的最多带两位小数的数字:^([1-9 ...
- 关于fefo函数
feof是C语言标准库函数函数,其原型在stdio.h中,其功能是检测流上的文件结束符. 函数原型: int feof(FILE *stream); 返回值:如果文件结束,则返回非0值,否则返回0 在 ...
- Java多线程整理(li)
目录: 1.volatile变量 2.Java并发编程学习 3.CountDownLatch用法 4.CyclicBarrier使用 5.BlockingQueue使用 6.任务执行器Executor ...
- java中关键字this的使用
在团队代码中看到对于当前类中的方法,使用了this关键字.经过测试发现,在此种情况下,this关键字的使用可有可无.因此,对java中this的使用做下总结: package testTHIS; pu ...