这个函数可以参考吴恩达deeplearning.ai中的指数加权平均。
和指数加权平均不一样的是,tensorflow中提供的这个函数,能够让decay_rate随着step的变化而变化。(在训练初期的时候,较小,在训练后期的时候,回归到比较大的情况)
公式是这样的:
decay= min(decay,(1+steps)/(10+steps))

注:(吴恩达讲的修正方法是用计算出来的shadow_variable除以(1-beta^t),其中beta即为上面的decay_rate, 其中t越大,括号里的值越接近1,因为beta是一个小于1的数)

在tensorflow中应用这个函数可以这样:
import tensorflow as tf
v = tf.Variable(0, dtype=tf.float32)
step = tf.Variable(0, trainable=False)
ema = tf.train.ExponentialMovingAverage(0.9, step)
maintain_average = ema.apply([v])
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init) #print initial value
print(sess.run([v, ema.average(v)])) sess.run(tf.assign(v, 5))
sess.run(maintain_average)
print(sess.run([v, ema.average(v)])) sess.run(tf.assign(v, 5))
sess.run(maintain_average)
print(sess.run([v, ema.average(v)]))
上面的代码有以下几点要注意:
1) 定义好ema之后,分两步,一步ema.apply,一步ema.average
2) 先apply,后average
3) apply里放的是一个list
4) Variable通过tf.assign改动
 
上面代码的运行结果:
[0.0, 0.0]
[5.0, 4.5]
[5.0, 4.9499998]
 

tf.train.ExponentialMovingAverage的更多相关文章

  1. Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...

  2. tensorflow 下的滑动平均模型 —— tf.train.ExponentialMovingAverage

    在采用随机梯度下降算法训练神经网络时,使用 tf.train.ExponentialMovingAverage 滑动平均操作的意义在于提高模型在测试数据上的健壮性(robustness). tenso ...

  3. deep_learning_Function_tf.train.ExponentialMovingAverage()滑动平均

    近来看batch normalization的代码时,遇到tf.train.ExponentialMovingAverage()函数,特此记录. tf.train.ExponentialMovingA ...

  4. tf.train.shuffle_batch函数解析

    tf.train.shuffle_batch (tensor_list, batch_size, capacity, min_after_dequeue, num_threads=1, seed=No ...

  5. 图融合之加载子图:Tensorflow.contrib.slim与tf.train.Saver之坑

    import tensorflow as tf import tensorflow.contrib.slim as slim import rawpy import numpy as np impor ...

  6. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

  7. 深度学习原理与框架-Tfrecord数据集的读取与训练(代码) 1.tf.train.batch(获取batch图片) 2.tf.image.resize_image_with_crop_or_pad(图片压缩) 3.tf.train.per_image_stand..(图片标准化) 4.tf.train.string_input_producer(字符串入队列) 5.tf.TFRecord(读

    1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_ ...

  8. 深度学习原理与框架-Tfrecord数据集的制作 1.tf.train.Examples(数据转换为二进制) 3.tf.image.encode_jpeg(解码图片加码成jpeg) 4.tf.train.Coordinator(构建多线程通道) 5.threading.Thread(建立单线程) 6.tf.python_io.TFR(TFR读入器)

    1. 配套使用: tf.train.Examples将数据转换为二进制,提升IO效率和方便管理 对于int类型 : tf.train.Examples(features=tf.train.Featur ...

  9. 深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)

    1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变 ...

随机推荐

  1. javascript中数组与字符串之间的转换以及字符串的替换

    数组转化为字符串: var a=['aa','bb','cc']; var b=a.join('-'); console.log(b)----->'aa-bb-cc' 字符串中的替换: 1.re ...

  2. HTML5 input事件检测输入框变化[转载]

    原文:http://www.linuxidc.com/Linux/2015-07/119984.htm 之前一直用change事件来监听输入框内容是否发生变化,只有当输入框失去焦点时才会触发,没想到h ...

  3. linux tar命令 压缩、打包、解压 详解

    linux tar命令 压缩.打包.解压 详解 1.常用压缩命令 tar –czvf 压缩后的文件.tar.gz 要压缩的文件 2.常用解压命令 tar –xzvf 解压后的文件.tar.gz [要解 ...

  4. HDU3045 Picnic Cows (斜率DP优化)(数形结合)

    转自PomeCat: "DP的斜率优化--对不必要的状态量进行抛弃,对不优的状态量进行搁置,使得在常数时间内找到最优解成为可能.斜率优化依靠的是数形结合的思想,通过将每个阶段和状态的答案反映 ...

  5. 如何将一个div水平垂直居中?4种方法做推荐

    方案一: div绝对定位水平垂直居中[margin:auto实现绝对定位元素的居中], 兼容性:,IE7及之前版本不支持 div{ width: 200px; height: 200px; backg ...

  6. Java线程面试题

     1:什么是线程?    线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理器编程,你可以使用多线程对运算密集型任务提速.比如,如果一个线 ...

  7. 通过hibernate封装数据库持久化过程回顾泛型/继承/实现等概念

    前言 在开发过程中,我们不难发现,客户的需求以及产品的定位对开发内容的走向有很大的决策作用,而这些往往需要在一开始就尽可能考虑周全和设计完善.为什么说是尽可能,因为我们都知道,需求这种东西,一言难尽. ...

  8. JDBC数据源 使用JNDI连接池实现数据库的连接

    0.引言 许多Web应用程序需要通过JDBC驱动程序访问数据库,以支持该应用程序所需的功能.Java EE平台规范要求Java EE应用程序服务器为此目的提供一个DataSource实现(即,用于JD ...

  9. [转载] Hive与HBase的联系与区别

    转载自http://blog.csdn.net/wangmuming/article/details/23954527和http://www.cnblogs.com/justinzhang/p/427 ...

  10. mybatis中sql语句的批量插入

    <!-- 收件箱插入收件信息 -->    <insert id="insertReceiveemail">           <!-- 生成一条U ...