考试想到了状压,苦于T1废掉太长时间,于是默默输出impossible。。
我们知道,一个格子的翻转受其翻转次数和它相邻翻转次数的影响。
由每一个位置操作两次相当于把它翻过来又翻回去,所以答案中每一个点操作次数为0或1。
然后我们枚举第一行的状态,1代表翻转,0代表不翻转。
如果与它相连的点的操作次数和它本身状态之和为偶数,它就会被翻成白色。
由于我们从上向下推,所以对于上一行的点来说,只有它下面那一个点不确定,我们就让下面这一个点进行能够让上一行点满足全为白色的操作。
这样推到最后一行,前面m-1行都满足,我们只需要看最后一行是否满足就可以了。
最后一行满足,就说明这种方案合法,再去更新之前存下的合法方案就可以了。

例如此位置本身与上左右状态之和为偶数,而此位置在初始时是1,所以我们需要把它翻成0,需要奇数个操作,所以我们把它下面的状态设置为1即可。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define pos(i,a,b) for(int i=(a);i<=(b);i++)
#define N 20
int n,m;
int a[N][N],temp[N][N],ans[N][N];
int work(int i){
	pos(j,1,n){
		if(j==1){
			pos(k,1,m)
				if((1<<(m-k))&i){
					temp[j][k]=1;
				}
		}
		pos(k,1,m){
			if(j!=n){
					if((temp[j][k-1]+temp[j][k+1]+temp[j-1][k]+temp[j][k])%2==0){
					if(a[j][k]){
						temp[j+1][k]=1;
					}
					else{
						temp[j+1][k]=0;
					}
				}
				else{
					if(a[j][k]==0){
						temp[j+1][k]=1;
					}
					else{
						temp[j+1][k]=0;
					}
				}
			}
			if(j==n){
				if((temp[j][k-1]+temp[j][k+1]+temp[j-1][k]+temp[j][k])%2==0){
					if(a[j][k]){
						return 0;
					}
				}
				else{
					if(!a[j][k])
					  return 0;
				}
			}
		}
	}
	return 1;
}
int flag;
int count(){
	int sum1=0,sum2=0;;
	pos(i,1,n){
		pos(j,1,m){
			if(temp[i][j])
			  sum1++;
			if(ans[i][j])
				sum2++;
		}
	}
	if(sum1<sum2)
	  return 1;
	return 0;
}
void update(){
	if(flag){
		if(count()){
			pos(i,1,n)
				pos(j,1,m)
					ans[i][j]=temp[i][j];
		}
		else{
			pos(i,1,n){
				pos(j,1,m){
					if(temp[i][j]<ans[i][j]){
						pos(k,1,n){
							pos(l,1,m){
								ans[k][l]=temp[k][l];
							}
						}
					}
					else{
						return;
					}
				}
			}
		}
	}
	else{
		pos(i,1,n)
			pos(j,1,m)
				ans[i][j]=temp[i][j];
		flag=1;
	}
}
int main(){
	//freopen("fliptile.in","r",stdin);
    //freopen("fliptile.out","w",stdout);
	scanf("%d%d",&n,&m);
	pos(i,1,n){
		pos(j,1,m){
			scanf("%d",&a[i][j]);
		}
	}
	pos(i,0,(1<<m)-1){
		memset(temp,0,sizeof(temp));
		if(work(i)){
			update();
		}
		else{
			continue;
		}
	}
	if(flag){
		pos(i,1,n){
			pos(j,1,m){
				cout<<ans[i][j]<<" ";
			}
			cout<<endl;
		}
	}
	else{
		cout<<"IMPOSSIBLE";
	}
	return 0;
}

  

[Usaco2007 Open]Fliptile 翻格子游戏 状态压缩的更多相关文章

  1. 1647: [Usaco2007 Open]Fliptile 翻格子游戏

    1647: [Usaco2007 Open]Fliptile 翻格子游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 423  Solved: 173[ ...

  2. [Usaco2007 Open]Fliptile 翻格子游戏

    [Usaco2007 Open]Fliptile 翻格子游戏 题目 Farmer John knows that an intellectually satisfied cow is a happy ...

  3. [Usaco2007 Open]Fliptile 翻格子游戏题解

    问题 B: [Usaco2007 Open]Fliptile 翻格子游戏 时间限制: 5 Sec  内存限制: 128 MB 题目描述 Farmer John knows that an intell ...

  4. 【BZOJ 1647】[Usaco2007 Open]Fliptile 翻格子游戏 模拟、搜索

    第一步我们发现对于每一个格子,我们只有翻和不翻两种状态,我们发现一旦确定了第一行操作,那么第二行的操作也就随之确定了,因为第一行操作之后我们要想得到答案就得把第一行全部为0,那么第二行的每一个格子的操 ...

  5. BZOJ 1647 [Usaco2007 Open]Fliptile 翻格子游戏:部分枚举 位运算

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1647 题意: 在一个n*m(1 <= n,m <= 15)的棋盘上,每一个格子 ...

  6. 【BZOJ】1647: [Usaco2007 Open]Fliptile 翻格子游戏(暴力)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1647 自己太弱...看题解.. 竟然是枚举第一行的放法,,,因为一定要全部变0,所以将前一行1的在这 ...

  7. [Usaco2007 Open]Fliptile 翻格子游戏 状压dp

    n,m<=15,直接搞肯定不行,考虑一行一行来, 每一行的状态只与三行有关,所以从第一行开始枚举,每一次让下面一行填上他上面那行的坑 最后一行必须要同时满足他自己和他上面那行,否则舍去 #inc ...

  8. bzoj 1647: [Usaco2007 Open]Fliptile 翻格子游戏【dfs】

    这个可以用异或高斯消元,但是我不会呀我用的暴搜 2的m次方枚举第一行的翻转情况,然后后面的就定了,因为对于一个j位置,如果i-1的j位置需要翻,那么一定要翻i的j,因为这是i-1的j最后翻的机会 按字 ...

  9. Fliptile 翻格子游戏

    问题 B: [Usaco2007 Open]Fliptile 翻格子游戏 时间限制: 5 Sec  内存限制: 128 MB 题目描述 Farmer John knows that an intell ...

随机推荐

  1. Example002定时打开窗口

    <!--实例002定时打开窗口--> <script> // 3秒后弹出窗口: function time() { window.open("index.html&q ...

  2. ORA-01157,记一次Oracle故障恢复过程

    生产环境中有两台部署PowerCenter的ETL业务机,近期发现无法通过客户端连接到ETL服务. 初步怀疑是PowerCenter挂掉了,或者资料库出现了故障. 登陆设备后发现PowerCenter ...

  3. 利用fputcsv导出数据备份数据

    今天,分享一个利用fputcsv导出数据备份数据的方法,我也时看到些零零散散的代码,想着拼起来,所以我只提供些思路,以及简单的代码,至于怎么组合能够让它更强大,尽情去探索吧 讲之前先上一段获取数据库里 ...

  4. 在linux环境下tomcat 指定 jdk或jre版本

    最近在服务器上部署的服务出了点问题,后来查到是因为JDK版本太高了,程序识别不了,需要把JDK降级. 但是服务器上面跑的程序很多,又不能直接把环境变量改了,所以只能想着怎么把这个出问题的工程服务指定j ...

  5. Express 学习笔记纯干货(Routing、Middleware、托管静态文件、view engine 等等)

    原始文章链接:http://www.lovebxm.com/2017/07/14/express-primer/ 1. Express 简介 Express 是基于 Node.js 平台,快速.开放. ...

  6. 关于shell脚本函数、数组、字符串截取、svn更新发布实例

    #/bin/bash #功能:QA服根据模板创建区配置文件并提交到svn上. SOURCE_PATH=/data/source_code SVN_PATH=/code/psm   #svn发布目录,要 ...

  7. C# 实现语音听写

    本文系原创,禁止转载. 分享如何使用c#对接科大讯飞语音听写服务,简单高效地实现语音听写. 实现语音听写主要分为录音和语音识别两部分:录音是指获取设备声卡端口的音频数据并将之保存为音频文件,语音识别就 ...

  8. 事件冒泡、事件委托、jQuery元素节点操作、滚轮事件与函数节流

    一.事件冒泡定义 事件冒泡是指在一个对象触发某类事件(比如单击onclick事件),如果此对象定义了此事件的处理程序,那么此事件就会调用这个处理程序,如果没有定义此事件处理程序或者事件返回true,那 ...

  9. jenkins IOS- ad-hoc 打包

    背景 客户无大企业证书,只有开发者证书,如果进行开发分发测试只能采用两种方式 testfight ad-hoc打包 上testfight存在一定的审核时间,排除掉,最后选择打ad-hoc的包 解决 查 ...

  10. (转)Bat Command

    1.Echo 命令 打开回显或关闭请求回显功能,或显示消息.如果没有任何参数,echo 命令将显示当前回显设置.语法 echo [{on|off}] [message] Sample篅echo off ...