【译】10分钟学会Pandas
十分钟学会Pandas
这是关于Pandas的简短介绍主要面向新用户。你可以参考Cookbook了解更复杂的使用方法
习惯上,我们这样导入:
In [1]: import pandas as pd In [2]: import numpy as np In [3]: import matplotlib.pyplot as plt
创建对象
请参阅数据结构简介部分
通过传递一个列表的值创建一个Series,让Pandas创建一个默认的整数索引:
In [4]: s = pd.Series([1,3,5,np.nan,6,8]) In [5]: s
Out[5]:
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
通过传递的numpy数组创建一个DataFrame,并使用DataFrame索引和标记列:
In [6]: dates = pd.date_range('', periods=6) In [7]: dates
Out[7]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D') In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD')) In [9]: df
Out[9]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
通过传递可转换成类似序列结构的字典序列来创建DataFrame。
查看不同列的数据类型
In [12]: df2.dtypes
Out[12]:
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
如果你使用的是IPython,可以使用Tab自动补全列名称(以及公共属性)。以下是将要完成的属性的一个子集:
In [13]: df2.<TAB>
df2.A df2.bool
df2.abs df2.boxplot
df2.add df2.C
df2.add_prefix df2.clip
df2.add_suffix df2.clip_lower
df2.align df2.clip_upper
df2.all df2.columns
df2.any df2.combine
df2.append df2.combine_first
df2.apply df2.compound
df2.applymap df2.consolidate
df2.as_blocks df2.convert_objects
df2.asfreq df2.copy
df2.as_matrix df2.corr
df2.astype df2.corrwith
df2.at df2.count
df2.at_time df2.cov
df2.axes df2.cummax
df2.B df2.cummin
df2.between_time df2.cumprod
df2.bfill df2.cumsum
df2.blocks df2.D
像你见到的那样,A、B、C、D都是使用Tab自动补全的。E也是如此;为了简洁其它的属性被截断了。
查看数据
请参阅基础部分
查看frame中头部和尾部的行
In [14]: df.head()
Out[14]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [15]: df.tail(3)
Out[15]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
显示索引、行和底层numpy数据
In [16]: df.index
Out[16]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D') In [17]: df.columns
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object') In [18]: df.values
Out[18]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
[ 1.2121, -0.1732, 0.1192, -1.0442],
[-0.8618, -2.1046, -0.4949, 1.0718],
[ 0.7216, -0.7068, -1.0396, 0.2719],
[-0.425 , 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784, 0.525 ]])
显示您的数据的快速统计摘要
In [19]: df.describe()
Out[19]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
数据转置
In [20]: df.T
Out[20]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
按轴排序
In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:
D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690
按值排序
In [22]: df.sort_values(by='B')
Out[22]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
选择
读取
选择一个单独的列,返回一个Series,等同于 df.A
In [23]: df['A']
Out[23]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64
使用[]选择,对行进行切片。
In [24]: df[0:3]
Out[24]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [25]: df['':'']
Out[25]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
通过标签选择
详情参阅标签选择
使用标签获取交叉区域
In [26]: df.loc[dates[0]]
Out[26]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64
通过标签选择多轴
In [27]: df.loc[:,['A','B']]
Out[27]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648
显示标签切片,包含端点
In [28]: df.loc['':'',['A','B']]
Out[28]:
A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
降低返回对象维度
In [29]: df.loc['',['A','B']]
Out[29]:
A 1.212112
B -0.173215
Name: 2013-01-02 00:00:00, dtype: float64
获取标量值
In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628
快速访问标量(同上一方法等价)
In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628
按位置选择
详情参阅按位置选择
通过传递整数选择位置
In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64
通过整数切片,类似于numpy/python
In [33]: df.iloc[3:5,0:2]
Out[33]:
A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
通过列表指定位置,类似于numpy/python样式
In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]:
A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232
对行切片
In [35]: df.iloc[1:3,:]
Out[35]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
对列切片
In [36]: df.iloc[:,1:3]
Out[36]:
B C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427
获取指定值
In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858
快速访问标量(同上一方法等价)
In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858
布尔索引
使用单列值选择数据。
In [39]: df[df.A > 0]
Out[39]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
从满足布尔条件的DataFrame中选择值。
In [40]: df[df > 0]
Out[40]:
A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988
使用isin()方法进行过滤
In [41]: df2 = df.copy() In [42]: df2['E'] = ['one', 'one','two','three','four','three'] In [43]: df2
Out[43]:
A B C D E
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]:
A B C D E
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
设置
设置一个新列会自动使索引对齐数据
In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('', periods=6)) In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64 In [47]: df['F'] = s1
按标签切片
In [48]: df.at[dates[0],'A'] = 0
按位置设置值
In [49]: df.iat[0,1] = 0
通过numpy数组设置
In [50]: df.loc[:,'D'] = np.array([5] * len(df))
设置结果如下
In [51]: df
Out[51]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 0.119209 5 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0
2013-01-05 -0.424972 0.567020 0.276232 5 4.0
2013-01-06 -0.673690 0.113648 -1.478427 5 5.0
where操作赋值
In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2
Out[54]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0
缺失数据
Pandas主要使用np.nan来表示缺失数据。默认情况下不包括在计算中。请参阅缺失数据部分
重建索引允许修改/添加/删除指定轴的索引,并返回数据副本。
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E']) In [56]: df1.loc[dates[0]:dates[1],'E'] = 1 In [57]: df1
Out[57]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN
删除所有缺少数据的行。
In [58]: df1.dropna(how='any')
Out[58]:
A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
填写缺失的数据行
In [59]: df1.fillna(value=5)
Out[59]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0
获取值为nan的布尔值
In [60]: pd.isnull(df1)
Out[60]:
A B C D F E
2013-01-01 False False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False False True
2013-01-04 False False False False False True
运算
请参阅二进制运算的基础部分
统计
运算一般排除丢失的数据。
执行描述性统计
In [61]: df.mean()
Out[61]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64
在其他轴上执行相同的运算
In [62]: df.mean(1)
Out[62]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64
运算具有不同维度和需要对齐的对象。此外,Pandas会沿着指定维度运算。
In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2) In [64]: s
Out[64]:
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1.0
2013-01-04 3.0
2013-01-05 5.0
2013-01-06 NaN
Freq: D, dtype: float64 In [65]: df.sub(s, axis='index')
Out[65]:
A B C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0
2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0
2013-01-06 NaN NaN NaN NaN NaN
应用
将函数应用于数据
In [66]: df.apply(np.cumsum)
Out[66]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10 1.0
2013-01-03 0.350263 -2.277784 -1.884779 15 3.0
2013-01-04 1.071818 -2.984555 -2.924354 20 6.0
2013-01-05 0.646846 -2.417535 -2.648122 25 10.0
2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0 In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64
直方图
详情请请参阅直方图和离散化
In [68]: s = pd.Series(np.random.randint(0, 7, size=10)) In [69]: s
Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int64 In [70]: s.value_counts()
Out[70]:
4 5
6 2
2 2
1 1
dtype: int64
字符串方法
Series在字符串中设置了一组字符串处理方法,可以方便地对数组中每个元素进行操作,如下面代码片段所示。请注意,字符串中的模式匹配默认使用正则表达式。(在某些情况下总是使用它们)。详情请参阅矢量字符串方法。
In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) In [72]: s.str.lower()
Out[72]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
合并
连接
在连接/合并类型操作的情况下,Pandas提供了一些具有用于索引和关系代数的各种函数合并Series、DataFrame和Panel对象的方法
请参阅合并部分
使用concat()把Pandas对象连接:
In [73]: df = pd.DataFrame(np.random.randn(10, 4)) In [74]: df
Out[74]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
连接
SQL风格合并。请参阅数据库风格连接
In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]}) In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]}) In [79]: left
Out[79]:
key lval
0 foo 1
1 foo 2 In [80]: right
Out[80]:
key rval
0 foo 4
1 foo 5 In [81]: pd.merge(left, right, on='key')
Out[81]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
给出另一个例子:
In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]}) In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]}) In [84]: left
Out[84]:
key lval
0 foo 1
1 bar 2 In [85]: right
Out[85]:
key rval
0 foo 4
1 bar 5 In [86]: pd.merge(left, right, on='key')
Out[86]:
key lval rval
0 foo 1 4
1 bar 2 5
追加
添加行到DataFrame。请参阅追加
In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D']) In [88]: df
Out[88]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758 In [89]: s = df.iloc[3] In [90]: df.append(s, ignore_index=True)
Out[90]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 1.453749 1.208843 -0.080952 -0.264610
分组
"分组"我们指的是涉及一个或多个以下步骤的过程
- Splitting:根据一些标准将数据分组
- Applying:将功能独立应用于每个组
- Combining:将结果合并成数据结构
请参阅分组部分
In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
....: 'foo', 'bar', 'foo', 'foo'],
....: 'B' : ['one', 'one', 'two', 'three',
....: 'two', 'two', 'one', 'three'],
....: 'C' : np.random.randn(8),
....: 'D' : np.random.randn(8)})
....: In [92]: df
Out[92]:
A B C D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033
分组,然后将sum()函数应用于生成的组。
In [93]: df.groupby('A').sum()
Out[93]:
C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958
按多列分组形成层次索引,然后应用该函数。
In [94]: df.groupby(['A','B']).sum()
Out[94]:
C D
A B
bar one -1.814470 2.395985
three -0.595447 0.166599
two -0.392670 -0.136473
foo one -1.195665 -0.616981
three 1.928123 -1.623033
two 2.414034 1.600434
重塑
In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
....: 'foo', 'foo', 'qux', 'qux'],
....: ['one', 'two', 'one', 'two',
....: 'one', 'two', 'one', 'two']]))
....: In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) In [98]: df2 = df[:4] In [99]: df2
Out[99]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230
堆
stack()方法将"压缩"DataFrame列中的一个级别。
In [100]: stacked = df2.stack() In [101]: stacked
Out[101]:
first second
bar one A 0.029399
B -0.542108
two A 0.282696
B -0.087302
baz one A -1.575170
B 1.771208
two A 0.816482
B 1.100230
dtype: float64
使用"stacked"DataFrame或Series(有一个MultilIndex作为索引)stack()的反向操作是unstack(),它默认情况下解除最后一个级别。
In [102]: stacked.unstack()
Out[102]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230 In [103]: stacked.unstack(1)
Out[103]:
second one two
first
bar A 0.029399 0.282696
B -0.542108 -0.087302
baz A -1.575170 0.816482
B 1.771208 1.100230 In [104]: stacked.unstack(0)
Out[104]:
first bar baz
second
one A 0.029399 -1.575170
B -0.542108 1.771208
two A 0.282696 0.816482
B -0.087302 1.100230
数据透视表
请参阅数据透视表部分。
In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
.....: 'B' : ['A', 'B', 'C'] * 4,
.....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
.....: 'D' : np.random.randn(12),
.....: 'E' : np.random.randn(12)})
.....: In [106]: df
Out[106]:
A B C D E
0 one A foo 1.418757 -0.179666
1 one B foo -1.879024 1.291836
2 two C foo 0.536826 -0.009614
3 three A bar 1.006160 0.392149
4 one B bar -0.029716 0.264599
5 one C bar -1.146178 -0.057409
6 two A foo 0.100900 -1.425638
7 three B foo -1.035018 1.024098
8 one C foo 0.314665 -0.106062
9 one A bar -0.773723 1.824375
10 two B bar -1.170653 0.595974
11 three C bar 0.648740 1.167115
我们可以轻松地从这些数据中快速生成数据透视表:
In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]:
C bar foo
A B
one A -0.773723 1.418757
B -0.029716 -1.879024
C -1.146178 0.314665
three A 1.006160 NaN
B NaN -1.035018
C 0.648740 NaN
two A NaN 0.100900
B -1.170653 NaN
C NaN 0.536826
时间序列
Pandas具有简单、强大和高效的功能,用于在变频期间执行重采样操作。这在金融应用中非常常见,但是不限于此。请参阅时间序列部分
In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S') In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) In [110]: ts.resample('5Min').sum()
Out[110]:
2012-01-01 25083
Freq: 5T, dtype: int64
时区表示
In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D') In [112]: ts = pd.Series(np.random.randn(len(rng)), rng) In [113]: ts
Out[113]:
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64 In [114]: ts_utc = ts.tz_localize('UTC') In [115]: ts_utc
Out[115]:
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64
转换到另一时区
In [116]: ts_utc.tz_convert('US/Eastern')
Out[116]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64
在时间跨度之间转换
In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M') In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng) In [119]: ts
Out[119]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
2012-04-30 0.281957
2012-05-31 1.523962
Freq: M, dtype: float64 In [120]: ps = ts.to_period() In [121]: ps
Out[121]:
2012-01 -1.134623
2012-02 -1.561819
2012-03 -0.260838
2012-04 0.281957
2012-05 1.523962
Freq: M, dtype: float64 In [122]: ps.to_timestamp()
Out[122]:
2012-01-01 -1.134623
2012-02-01 -1.561819
2012-03-01 -0.260838
2012-04-01 0.281957
2012-05-01 1.523962
Freq: MS, dtype: float64
在时间和时间戳之间转换,可以使用一些方便的算术函数。在下面例子中:
In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV') In [124]: ts = pd.Series(np.random.randn(len(prng)), prng) In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9 In [126]: ts.head()
Out[126]:
1990-03-01 09:00 -0.902937
1990-06-01 09:00 0.068159
1990-09-01 09:00 -0.057873
1990-12-01 09:00 -0.368204
1991-03-01 09:00 -1.144073
Freq: H, dtype: float64
明确的
自0.15版本以来,Pandas可以在DataFrame中包含分类数据。有关完整文档,请参阅分类介绍和API文档。
In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
将原始数据转换为分类数据。
In [128]: df["grade"] = df["raw_grade"].astype("category") In [129]: df["grade"]
Out[129]:
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
将类别重命名为更有意义的名称
In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]
重新排列类别并同时添加丢失的类别(Series.cat下的方法返回一个默认的新Series)。
In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"]) In [132]: df["grade"]
Out[132]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
排序是按类别中的顺序排序的,而不是词法顺序。
In [133]: df.sort_values(by="grade")
Out[133]:
id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good
按分类列分组还显示空类别。
In [134]: df.groupby("grade").size()
Out[134]:
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64
绘图
绘图文档
In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) In [136]: ts = ts.cumsum() In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x1187d7278>
在DataFrame中,plot()可以方便绘制带标签的所有列。
In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
.....: columns=['A', 'B', 'C', 'D'])
.....: In [139]: df = df.cumsum() In [140]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[140]: <matplotlib.legend.Legend at 0x11b5dea20>
获取数据输入/输出
CSV
In [141]: df.to_csv('foo.csv')
In [142]: pd.read_csv('foo.csv')
Out[142]:
Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
.. ... ... ... ... ...
993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]
HDF5
读写HDF存储
写入HDF5存储
In [143]: df.to_hdf('foo.h5','df')
从HDF5存储中读取
In [144]: pd.read_hdf('foo.h5','df')
Out[144]:
A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933 -0.741620 -1.962409
2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
... ... ... ... ...
2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]
Excel
读写Excel
写入Excel文件
In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
从Excel文件读取
In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[146]:
A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933 -0.741620 -1.962409
2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
... ... ... ... ...
2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]
陷阱
如果你尝试以下操作,可以看到如下异常:
>>> if pd.Series([False, True, False]):
print("I was true")
Traceback
...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
【译】10分钟学会Pandas的更多相关文章
- 10分钟学会Linux
10分钟学会Linux有点夸张,可是能够让一个新手初步熟悉Linux中最重要最主要的知识,本文翻译的英文网页在众多Linux入门学习的资料中还是很不错的. 英文地址:http://freeengine ...
- 10分钟了解 pandas - pandas官方文档译文 [原创]
10 Minutes to pandas 英文原文:https://pandas.pydata.org/pandas-docs/stable/10min.html 版本:pandas 0.23.4 采 ...
- 10分钟学会搭建Android开发环境 Eclipse: The import android.support cannot be resolved
10分钟学会搭建Android开发环境_隋雨辰 http://v.youku.com/v_show/id_XNTE2OTI5Njg0.html?from=s1.8-1-1.2 The import a ...
- 10分钟学会VS NuGet包私有化部署
前言 我们之前实现了打包发布NuGet,但是发布后的引用是公有的,谁都可以访问,显然这种方式是不可取的. 命令版本:10分钟学会Visual Studio将自己创建的类库打包到NuGet进行引用(ne ...
- UWP开发入门(十九)——10分钟学会在VS2015中使用Git
写程序必然需要版本控制,哪怕是个人项目也是必须的.我们在开发UWP APP的时候,VS2015默认提供了对微软TFS和Git的支持.考虑到现在Git很火,作为微软系的程序员也不得不学一点防身,以免被开 ...
- python 10分钟入门pandas
本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯 ...
- 10分钟学习pandas
10 Minutes to pandas This is a short introduction to pandas, geared mainly for new users. You can se ...
- 10分钟学会Less开发环境搭建与初体验
Less 是一门 CSS 预处理语言,它扩充了 CSS 语言,增加了诸如变量.混合(mixin).函数等功能,让 CSS 更易维护.方便制作主题.扩充. 今天看一下,10分钟能不能手把手快速教会你Le ...
- 10分钟学会windows中iis搭建服务器集群实现负载均衡和nginx代理转发
前言 我们之前聊过 10分钟搭建服务器集群--Windows7系统中nginx与IIS服务器搭建集群实现负载均衡:https://www.cnblogs.com/xiongze520/p/103087 ...
随机推荐
- 读取指定excel,修改并某个值并另存到指定路径
HSSFWorkBook是解析excel2007以前的版本(xls)之后的版本使用XSSFWrokBook(xlsx) 附:处理excel2007之后的版本代码: package gbyp.autoQ ...
- RobotFramework自动化测试框架-移动手机自动化测试Clear Text关键字的使用
Clear Text关键字用来清除输入框的数据,该关键字接收一个参数[ locator ],这里的locator指的就是界面元素的定位方式. 示例1:Clear Text清除输入框数据时,采用reso ...
- HTML超文本
1.HTML链接 2.HTML表格 3.HTML图像 4.HTML列表 5.HTML块 6.HTML布局 7.HTML表单 1.HTML链接 (1)给文字及图片添加超链接 < html> ...
- arm-linux-gcc 4.3.2编译uboot 1.1.6
在第三期项目的视频中,官方提供了一整套新的工具链,bootloader, 内核和文件系统(arm-linux-gcc_4.3.2, uboot-2012.04.01, linux-3.4.2)其中ub ...
- 开源API集成测试工具 Hitchhiker v0.1.3 - 参数化请求
Hitchhiker 是一款开源的 Restful Api 集成测试工具,你可以轻松部署到本地,和你的team成员一起管理Api. 详细介绍请看: http://www.cnblogs.com/bro ...
- 国外支付PayPal
PayPal官网https://www.paypal.com/ PayPal沙箱https://www.sandbox.paypal.com/signin?country.x=US&local ...
- mac pycharm 里table键设置为4个空格键
Operation flow: File--Default Settings editor--code style--python
- uva 10391
这个题,单纯做出来有很多种方法,但是时间限制3000ms,因此被TL了不知道多少次,关键还是找对最优解决方法,代码附上: #include<bits/stdc++.h> using nam ...
- Ngnix技术研究系列2-基于Redis实现动态路由
上篇博文我们写了个引子: Ngnix技术研究系列1-通过应用场景看Nginx的反向代理 发现了新大陆,OpenResty OpenResty 是一个基于 Nginx 与 Lua 的高性能 Web 平台 ...
- 几个 Cookie 操作例子的分析
MDN 上提供了操作 Cookie 的若干个例子,也有一个简单的 cookie 框架,今天尝试分析一下,最后是 jquery-cookie 插件的分析. document.cookie 的操作例子 例 ...