【转】Spark Streaming和Kafka整合开发指南
基于Receivers的方法
这个方法使用了Receivers来接收数据。Receivers的实现使用到Kafka高层次的消费者API。对于所有的Receivers,接收到的数据将会保存在Spark executors中,然后由Spark Streaming启动的Job来处理这些数据。
然而,在默认的配置下,这种方法在失败的情况下会丢失数据,为了保证零数据丢失,你可以在Spark Streaming中使用WAL日志,这是在Spark 1.2.0才引入的功能,这使得我们可以将接收到的数据保存到WAL中(WAL日志可以存储在HDFS上),所以在失败的时候,我们可以从WAL中恢复,而不至于丢失数据。
下面,我将介绍如何使用这种方法来接收数据。
1、引入依赖。
对于Scala和Java项目,你可以在你的pom.xml文件引入以下依赖:
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka_2.10</artifactId> <version>1.3.0</version></dependency> |
如果你是使用SBT,可以这么引入:
libraryDependencies += "org.apache.spark" % "spark-streaming-kafka_2.10" % "1.3.0" |
2、编程
在Streaming程序中,引入KafkaUtils,并创建一个输入DStream:
import org.apache.spark.streaming.kafka._val kafkaStream = KafkaUtils.createStream(streamingContext, [ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume]) |
在创建DStream的时候,你也可以指定数据的Key和Value类型,并指定相应的解码类。
1、Kafka中Topic的分区和Spark Streaming生成的RDD中分区不是一个概念。所以,在
KafkaUtils.createStream()增加特定主题分区数仅仅是增加一个receiver中消费Topic的线程数。并不增加Spark并行处理数据的数量;
2、对于不同的Group和tpoic我们可以使用多个receivers创建不同的DStreams来并行接收数据;
3、如果你启用了WAL,这些接收到的数据将会被持久化到日志中,因此,我们需要将storage level 设置为StorageLevel.MEMORY_AND_DISK_SER ,也就是:
KafkaUtils.createStream(..., StorageLevel.MEMORY_AND_DISK_SER) |
3、部署
对应任何的Spark 应用,我们都是用spark-submit来启动你的应用程序,对于Scala和Java用户,如果你使用的是SBT或者是Maven,你可以将spark-streaming-kafka_2.10及其依赖打包进应用程序的Jar文件中,并确保spark-core_2.10和 spark-streaming_2.10标记为provided,因为它们在Spark 安装包中已经存在:
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.10</artifactId> <version>1.3.0</version> <scope>provided</scope></dependency><dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>1.3.0</version> <scope>provided</scope></dependency> |
然后使用spark-submit来启动你的应用程序。
[iteblog@ spark]$ spark-1.3.0-bin-2.6.0/bin/spark-submit --master yarn-cluster --class iteblog.KafkaTest --jars lib/spark-streaming-kafka_2.10-1.3.0.jar, lib/spark-streaming_2.10-1.3.0.jar, lib/kafka_2.10-0.8.1.1.jar,lib/zkclient-0.3.jar, lib/metrics-core-2.2.0.jar ./iteblog-1.0-SNAPSHOT.jar |
下面是一个完整的例子:
object KafkaWordCount { def main(args: Array[String]) { if (args.length < 4) { System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>") System.exit(1) } StreamingExamples.setStreamingLogLevels() val Array(zkQuorum, group, topics, numThreads) = args val sparkConf = new SparkConf().setAppName("KafkaWordCount") val ssc = new StreamingContext(sparkConf, Seconds(2)) ssc.checkpoint("checkpoint") val topicMap = topics.split(",").map((_,numThreads.toInt)).toMap val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1L)) .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2) wordCounts.print() ssc.start() ssc.awaitTermination() }} |
Direct的方法
和基于Receiver接收数据不一样,这种方式定期地从Kafka的topic+partition中查询最新的偏移量,再根据定义的偏移量范围在每个batch里面处理数据。当作业需要处理的数据来临时,spark通过调用Kafka的简单消费者API读取一定范围的数据。这个特性目前还处于试验阶段,而且仅仅在Scala和Java语言中提供相应的API。
和基于Receiver方式相比,这种方式主要有一些几个优点:
(1)、简化并行。我们不需要创建多个Kafka 输入流,然后union他们。而使用directStream,Spark Streaming将会创建和Kafka分区一样的RDD分区个数,而且会从Kafka并行地读取数据,也就是说Spark分区将会和Kafka分区有一一对应的关系,这对我们来说很容易理解和使用;
(2)、高效。第一种实现零数据丢失是通过将数据预先保存在WAL中,这将会复制一遍数据,这种方式实际上很不高效,因为这导致了数据被拷贝两次:一次是被Kafka复制;另一次是写到WAL中。但是本文介绍的方法因为没有Receiver,从而消除了这个问题,所以不需要WAL日志;
(3)、恰好一次语义(Exactly-once semantics)。《Spark Streaming和Kafka整合开发指南(一)》文章中通过使用Kafka高层次的API把偏移量写入Zookeeper中,这是读取Kafka中数据的传统方法。虽然这种方法可以保证零数据丢失,但是还是存在一些情况导致数据会丢失,因为在失败情况下通过Spark Streaming读取偏移量和Zookeeper中存储的偏移量可能不一致。而本文提到的方法是通过Kafka低层次的API,并没有使用到Zookeeper,偏移量仅仅被Spark Streaming保存在Checkpoint中。这就消除了Spark Streaming和Zookeeper中偏移量的不一致,而且可以保证每个记录仅仅被Spark Streaming读取一次,即使是出现故障。
但是本方法唯一的坏处就是没有更新Zookeeper中的偏移量,所以基于Zookeeper的Kafka监控工具将会无法显示消费的状况。然而你可以通过Spark提供的API手动地将偏移量写入到Zookeeper中。如何使用呢?其实和方法一差不多
1、引入依赖。
对于Scala和Java项目,你可以在你的pom.xml文件引入以下依赖:
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka_2.10</artifactId> <version>1.3.0</version></dependency> |
如果你是使用SBT,可以这么引入:
libraryDependencies += "org.apache.spark" % "spark-streaming-kafka_2.10" % "1.3.0" |
2、编程
在Streaming应用程序代码中,引入KafkaUtils ,并创建DStream输入流:
import org.apache.spark.streaming.kafka._val directKafkaStream = KafkaUtils.createDirectStream[ [key class], [value class], [key decoder class], [value decoder class] ]( streamingContext, [map of Kafka parameters], [set of topics to consume]) |
在 Kafka parameters参数中,你必须指定 metadata.broker.list或者bootstrap.servers参数。在默认情况下,Spark Streaming将会使用最大的偏移量来读取Kafka每个分区的数据。如果你配置了auto.offset.reset为smallest,那么它将会从最小的偏移量开始消费。
当然,你也可以使用KafkaUtils.createDirectStream的另一个版本从任意的位置消费数据。如果你想回去每个batch中Kafka的偏移量,你可以如下操作:
directKafkaStream.foreachRDD { rdd => val offsetRanges = rdd.asInstanceOf[HasOffsetRanges] // offsetRanges.length = # of Kafka partitions being consumed ...} |
你可以通过这种方式来手动地更新Zookeeper里面的偏移量,使得基于Zookeeper偏移量的Kafka监控工具可以使用。
还有一点需要注意,因为这里介绍的方法没有使用到Receiver,所以Spark中关于spark.streaming.receiver.*相关的配置参数将不会对创建DStreams 有影响。我们可以使用spark.streaming.kafka.*参数进行配置。
3、部署
对应任何的Spark 应用,我们都是用spark-submit来启动你的应用程序,对于Scala和Java用户,如果你使用的是SBT或者是Maven,你可以将spark-streaming-kafka_2.10及其依赖打包进应用程序的Jar文件中,并确保spark-core_2.10和 spark-streaming_2.10标记为provided,因为它们在Spark 安装包中已经存在:
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.10</artifactId> <version>1.3.0</version> <scope>provided</scope></dependency><dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>1.3.0</version> <scope>provided</scope></dependency> |
然后使用spark-submit来启动你的应用程序。
【转】Spark Streaming和Kafka整合开发指南的更多相关文章
- Spark Streaming和Kafka整合开发指南(二)
在本博客的<Spark Streaming和Kafka整合开发指南(一)>文章中介绍了如何使用基于Receiver的方法使用Spark Streaming从Kafka中接收数据.本文将介绍 ...
- Spark Streaming和Kafka整合开发指南(一)
Apache Kafka是一个分布式的消息发布-订阅系统.可以说,任何实时大数据处理工具缺少与Kafka整合都是不完整的.本文将介绍如何使用Spark Streaming从Kafka中接收数据,这里将 ...
- spark streaming基于Kafka的开发
spark streaming使用Kafka数据源进行数据处理,本文侧重讲述实践使用. 一.基于receiver的方式 在使用receiver的时候,如果receiver和partition分配不当, ...
- Spark Streaming和Kafka整合保证数据零丢失
当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源 ...
- Spark Streaming和Kafka整合是如何保证数据零丢失
转载:https://www.iteblog.com/archives/1591.html 当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢 ...
- Spark Streaming与kafka整合实践之WordCount
本次实践使用kafka console作为消息的生产者,Spark Streaming作为消息的消费者,具体实践代码如下 首先启动kafka server .\bin\windows\kafka-se ...
- Spark streaming消费Kafka的正确姿势
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不 ...
- spark streaming集成kafka
Kakfa起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如Clouder ...
- Spark Streaming on Kafka解析和安装实战
本课分2部分讲解: 第一部分,讲解Kafka的概念.架构和用例场景: 第二部分,讲解Kafka的安装和实战. 由于时间关系,今天的课程只讲到如何用官网的例子验证Kafka的安装是否成功.后续课程会接着 ...
随机推荐
- 挖个坑,写一个Spring+SpringMVC+Mybatis的项目
想挖个坑督促自己练技术,有时候想到一个项目,大概想了一些要实现的功能,怎么实现.现在觉得自己差不多能完成QQ空间的主要功能了.准备立个牌坊,写一个类似功能的网站.并且把进度放到这里来. 初步计划实现以 ...
- Servlet使用简介
Servlet的使用基本包含三个步骤: 1.继承HttpServlet 或实现Servlet 接口 (根据源码分析最终都是对servlet接口的实现) 2.配置地址: 配置web.xml 或者用注解的 ...
- .NET Core多平台开发体验[1]: Windows
微软在千禧年推出 .NET战略,并在两年后推出第一个版本的.NET Framework和IDE(Visual Studio.NET 2002,后来改名为Visual Studio),如果你是一个资深的 ...
- Maven生成可以直接运行的jar包的多种方式
Maven可以使用mvn package指令对项目进行打包,如果使用Java -jar xxx.jar执行运行jar文件,会出现"no main manifest attribute, in ...
- MySQL(八)之DML
昨天晚上很晚的时候才写完MySQL的常用函数,今天给大家讲一下MySQL的DML.接下来让我们直接来学习了,今天感冒了.身体很难受下午的时候要去买一波药了,不然程序员也扛不住呀. DML全称Data ...
- JAVA实用案例之验证码开发
验证码在很多地方都会遇到,实现的方法和形式也有很多,主要的目的就是为了安全,防止一些恶意的攻击等.说实话那么多年竟然没注意过这东西,原理很简单,贴出来给大家做个参考. 1.简单介绍 一般稍微有些经验的 ...
- Python 多线程库总结
多线程库总结 基于线程的并行性 threading模块 下面是一些基础函数,函数包括: 函数 threading.active_count() threading.current_thread() t ...
- poj 3013 SPFA
首先看题看的很懵.. 然后这题直接没想用Djstra做 TLE了.看discuss,Dijstra要用堆优化,也可以用SPFA做. 这里在网上找了这两种做法的区别,点多稠密图用Dij,以为它是操作点的 ...
- datable 翻页事件处理
JQuery datatable插件,点下一页在点击事件无效问题 (2013-10-16 16:01:54) 转载▼ 分类: C# 在MVC的项目中,我利用jquery datatable 来实现 ...
- 【Alpha】第六次Daily Scrum Meeting
一.今日站立式会议照片 二.会议内容 1.具体讨论了各个功能模块如何实现所使用的函数方法,以及确定各功能编写的详易与主次之分.其中对礼物挑选的各个分类条件做了修改与确认.并考虑邀请同学对已构建出的简易 ...