题意  输出八数码问题从给定状态到12345678x的路径

用康托展开将排列相应为整数  即这个排列在全部排列中的字典序  然后就是基础的BFS了

#include <bits/stdc++.h>
using namespace std;
const int N = 5e5, M = 9;
int x[4] = { -1, 1, 0, 0};
int y[4] = {0, 0, -1, 1};
int fac[] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320};
int puz[N][M], nex[N], dir[N], vis[N], q[N]; int getCantor(int a[]) //康托展开 将排列转化为整数
{
int ret = 0;
for(int i = 0; i < M; ++i)
{
for(int j = i + 1; j < M; ++j)
if(a[j] < a[i]) ret += fac[M - i - 1];
}
return ret;
} void bfs()
{
int t[M] = {1, 2, 3, 4, 5, 6, 7, 8, 0};
int id = getCantor(t);
dir[id] = -1; memcpy(puz[id], t, sizeof(t));
memset(vis, 0, sizeof(vis)); int r, c, k, nr, nc, nk, nid;
int front = 0, rear = 0;
q[rear++] = id;
vis[id] = 1; while(front < rear)
{
int id = q[front++];
memcpy(t, puz[id], sizeof(t));
for(k = 0; t[k]; ++k); //找0的位置
r = k / 3, c = k % 3; //一维转二维 for(int i = 0; i < 4; ++i)
{
nr = r + x[i], nc = c + y[i], nk = nr * 3 + nc; if(nr < 0 || nr > 2 || nc < 0 || nc > 2) continue;
swap(t[k], t[nk]);
nid = getCantor(t);
memcpy(puz[nid], t, sizeof(t));
swap(t[k], t[nk]); if(vis[nid]) continue;
vis[nid] = 1;
q[rear++] = nid;
nex[nid] = id;
dir[nid] = i;
}
}
} int main()
{
char t[5], sdir[] = "durl";
int s[M], id;
bfs(); while(~scanf("%s", t))
{
s[0] = t[0] == 'x' ? 0 : t[0] - '0';
for(int i = 1; i < M; ++i)
{
scanf("%s", t);
s[i] = t[0] == 'x' ? 0 : t[0] - '0';
} id = getCantor(s);
if(!vis[id]) puts("unsolvable");
else
{
while(dir[id] >= 0)
{
printf("%c", sdir[dir[id]]);
id = nex[id];
}
puts("");
}
}
return 0;
}
//Last modified : 2015-07-05 11:15


Eight

Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the
missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:

 1  2  3  4
5 6 7 8
9 10 11 12
13 14 15 x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

 1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. 



Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 

frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). 



In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 

arrangement.

 
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are
represented by numbers 1 to 8, plus 'x'. For example, this puzzle 



1 2 3 

x 4 6 

7 5 8 



is described by this list: 



1 2 3 x 4 6 7 5 8
 
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces
and start at the beginning of the line. Do not print a blank line between cases.
 
Sample Input
2 3 4 1 5 x 7 6 8
 
Sample Output
ullddrurdllurdruldr
 

HDU 1043 Eight (BFS&#183;八数码&#183;康托展开)的更多相关文章

  1. HDU 1043 Eight 【经典八数码输出路径/BFS/A*/康托展开】

    本题有写法好几个写法,但主要思路是BFS: No.1 采用双向宽搜,分别从起始态和结束态进行宽搜,暴力判重.如果只进行单向会超时. No.2 采用hash进行判重,宽搜采用单向就可以AC. No.3 ...

  2. hdu1043Eight (经典的八数码)(康托展开+BFS)

    建议先学会用康托展开:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description The 15-puzzle ...

  3. HDU 3567 Eight II(八数码 II)

    HDU 3567 Eight II(八数码 II) /65536 K (Java/Others)   Problem Description - 题目描述 Eight-puzzle, which is ...

  4. Eight HDU - 1043 (双向BFS)

    记得上人工智能课的时候老师讲过一个A*算法,计算估价函数(f[n]=h[n]+g[n])什么的,感觉不是很好理解,百度上好多都是用逆向BFS写的,我理解的逆向BFS应该是从终点状态出发,然后把每一种状 ...

  5. HDU 1043 Eight BFS

    题意:就是恢复成1,2,3,4,5,6,7,8,0; 分析:暴力BFS预处理,所有路径,用康拓展开判重,O(1)打印 93ms 还是很快的 #include <iostream> #inc ...

  6. BFS:八数码问题

    #include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> ...

  7. POJ 1077 Eight (BFS+康托展开)详解

    本题知识点和基本代码来自<算法竞赛 入门到进阶>(作者:罗勇军 郭卫斌) 如有问题欢迎巨巨们提出 题意:八数码问题是在一个3*3的棋盘上放置编号为1~8的方块,其中有一块为控制,与空格相邻 ...

  8. hdu 1043 Eight (八数码问题)【BFS】+【康拓展开】

    <题目链接> 题目大意:给出一个3×3的矩阵(包含1-8数字和一个字母x),经过一些移动格子上的数后得到连续的1-8,最后一格是x,要求最小移动步数. 解题分析:本题用BFS来寻找路径,为 ...

  9. hdu 1043 Eight 经典八数码问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 The 15-puzzle has been around for over 100 years ...

随机推荐

  1. Java一点输入输出技巧

    输入: 格式1:Scanner sc = new Scanner(System.in); 格式2:Scanner sc = new Scanner(new BufferedInputStream(Sy ...

  2. ldap数据库--ODSEE--suffix

    ldap数据库的suffix是建立ldap之间复制协议的基础,suffix的创建也可以通过管理界面进行,也可以通过命令行进行.不同点是通过管理界面创建的suffix会自动创建一条对应该suffix的匿 ...

  3. mapbox-gl 开发包dev生成

    mapbox-gl简介 mapbox-gl采用webgl,提供在线地图实时渲染功能,具有以下特点: 1.多图层显示 2.图层元素显示样式在颜色.字体.大小范围等.是否显示等可实时更改 3.定位抓取选择 ...

  4. 阿里云CentOS搭建系统

    1.在阿里云网站上购买申请服务器. 2.通过Xshell连接服务器,并用root账户登入. 3.配置java开发环境:(也可以使用阿里云一键部署,自动配置并部署服务器) 一.安装jdk 1.查看Lin ...

  5. 多少牛逼的程序员毁在low逼的英文发音上(JAVA)

    最最常用的关键词及音标 数据类型:boolean.byte.short.int.long.double.char.float.double. 包引入和包声明:import.package. 用于类和接 ...

  6. 结合程序崩溃后的core文件分析bug

    引言     在<I/O的效率比较>中,我们在修改图1程序的BUF_SIZE为8388608时,运行程序出现崩溃,如下图1:          图1. 段错误     一般而言,导致程序段 ...

  7. 激光相机数据融合(3)--KITTI数据集

    KITTI数据集提供了双目图像,激光数据,和imu/gps位置信息,其中还包括了大量的算法.下载地址为:http://www.cvlibs.net/datasets/kitti/raw_data.ph ...

  8. iOS学习——如何在mac上获取开发使用的模拟器的资源以及模拟器中每个应用的应用沙盒

    如题,本文主要研究如何在mac上获取开发使用的模拟器的资源以及模拟器中每个应用的应用沙盒.做过安卓开发的小伙伴肯定很方便就能像打开资源管理器一样查看我们写到手机本地或应用中的各种资源,但是在iOS开发 ...

  9. SSM框架下结合 log4j、slf4j打印日志

    首先加入log4j和slf4j的jar包 <!-- 日志处理 <!-- slf4j日志包--> <dependency> <groupId>org.slf4j ...

  10. mysql安装简单教程(自动安装/配置安装)

    mysql安装简单教程(自动安装/配置安装) 1.1前言: 由于特殊原因,在最近2-3个月里mysql真是安装了无数遍,每次安装都要上网找教程,每个教程基本都不一样,因此还是自己写下来比较好,毕竟自己 ...