word2vec原理(三) 基于Negative Sampling的模型
word2vec原理(一) CBOW与Skip-Gram模型基础
word2vec原理(二) 基于Hierarchical Softmax的模型
word2vec原理(三) 基于Negative Sampling的模型
在上一篇中我们讲到了基于Hierarchical Softmax的word2vec模型,本文我们我们再来看看另一种求解word2vec模型的方法:Negative Sampling。
1. Hierarchical Softmax的缺点与改进
在讲基于Negative Sampling的word2vec模型前,我们先看看Hierarchical Softmax的的缺点。的确,使用霍夫曼树来代替传统的神经网络,可以提高模型训练的效率。但是如果我们的训练样本里的中心词$w$是一个很生僻的词,那么就得在霍夫曼树中辛苦的向下走很久了。能不能不用搞这么复杂的一颗霍夫曼树,将模型变的更加简单呢?
Negative Sampling就是这么一种求解word2vec模型的方法,它摒弃了霍夫曼树,采用了Negative Sampling(负采样)的方法来求解,下面我们就来看看Negative Sampling的求解思路。
2. 基于Negative Sampling的模型概述
既然名字叫Negative Sampling(负采样),那么肯定使用了采样的方法。采样的方法有很多种,比如之前讲到的大名鼎鼎的MCMC。我们这里的Negative Sampling采样方法并没有MCMC那么复杂。
比如我们有一个训练样本,中心词是$w$,它周围上下文共有$2c$个词,记为$context(w)$。由于这个中心词$w$,的确和$context(w)$相关存在,因此它是一个真实的正例。通过Negative Sampling采样,我们得到neg个和$w$不同的中心词$w_i, i=1,2,..neg$,这样$context(w)$和$$w_i$就组成了neg个并不真实存在的负例。利用这一个正例和neg个负例,我们进行二元逻辑回归,得到负采样对应每个词$w_i$对应的模型参数$\theta_{i}$,和每个词的词向量。
从上面的描述可以看出,Negative Sampling由于没有采用霍夫曼树,每次只是通过采样neg个不同的中心词做负例,就可以训练模型,因此整个过程要比Hierarchical Softmax简单。
不过有两个问题还需要弄明白:1)如果通过一个正例和neg个负例进行二元逻辑回归呢? 2) 如何进行负采样呢?
我们在第三节讨论问题1,在第四节讨论问题2.
3. 基于Negative Sampling的模型梯度计算
Negative Sampling也是采用了二元逻辑回归来求解模型参数,通过负采样,我们得到了neg个负例$(context(w), w_i) i=1,2,..neg$。为了统一描述,我们将正例定义为$w_0$。
在逻辑回归中,我们的正例应该期望满足:$$P(context(w_0), w_i) = \sigma(x_{w_i}^T\theta^{w_i}) ,y_i=1, i=0$$
我们的负例期望满足:$$P(context(w_0), w_i) =1- \sigma(x_i^T\theta^{w_i}), y_i = 0, i=1,2,..neg$$
我们期望可以最大化下式:$$ \prod_{i=0}^{neg}P(context(w_0), w_i) = \sigma(x_{w_0}^T\theta^{w_0})\prod_{i=1}^{neg}(1- \sigma(x_{w_i}^T\theta^{w_i}))$$
利用逻辑回归和上一节的知识,我们容易写出此时模型的似然函数为:$$\prod_{i=0}^{neg} \sigma(x_{w_i}^T\theta^{w_i})^{y_i}(1- \sigma(x_{w_i}^T\theta^{w_i}))^{1-y_i}$$
此时对应的对数似然函数为:$$L = \sum\limits_{i=0}^{neg}y_i log(\sigma(x_{w_i}^T\theta^{w_i})) + (1-y_i) log(1- \sigma(x_{w_i}^T\theta^{w_i}))$$
和Hierarchical Softmax类似,我们采用随机梯度上升法,仅仅每次只用一个样本更新梯度,来进行迭代更新得到我们需要的$x_{w_i}, \theta^{w_i}, i=0,1,..neg$, 这里我们需要求出$x_{w_i}, \theta^{w_i}, i=0,1,..neg$的梯度。
首先我们计算$\theta^{w_i}$的梯度:$$\begin{align} \frac{\partial L}{\partial \theta^{w_i} } &= y_i(1- \sigma(x_{w_i}^T\theta^{w_i}))x_{w_i}-(1-y_i)\sigma(x_{w_i}^T\theta^{w_i})x_{w_i} \\ & = (y_i -\sigma(x_{w_i}^T\theta^{w_i})) x_{w_i} \end{align}$$
同样的方法,我们可以求出$x_{w_i}$的梯度如下:$$\frac{\partial L}{\partial x^{w_i} } = (y_i -\sigma(x_{w_i}^T\theta^{w_i}))\theta^{w_i} $$
有了梯度表达式,我们就可以用梯度上升法进行迭代来一步步的求解我们需要的$x_{w_i}, \theta^{w_i}, i=0,1,..neg$。
4. Negative Sampling负采样方法
现在我们来看看如何进行负采样,得到neg个负例。word2vec采样的方法并不复杂,如果词汇表的大小为$V$,那么我们就将一段长度为1的线段分成$V$份,每份对应词汇表中的一个词。当然每个词对应的线段长度是不一样的,高频词对应的线段长,低频词对应的线段短。每个词$w$的线段长度由下式决定:$$len(w) = \frac{count(w)}{\sum\limits_{u \in vocab} count(u)}$$
在word2vec中,分子和分母都取了3/4次幂如下:$$len(w) = \frac{count(w)^{3/4}}{\sum\limits_{u \in vocab} count(u)^{3/4}}$$
在采样前,我们将这段长度为1的线段划分成$M$等份,这里$M >> V$,这样可以保证每个词对应的线段都会划分成对应的小块。而M份中的每一份都会落在某一个词对应的线段上。在采样的时候,我们只需要从$M$个位置中采样出$neg$个位置就行,此时采样到的每一个位置对应到的线段所属的词就是我们的负例词。
在word2vec中,$M$取值默认为$10^8$。
5. 基于Negative Sampling的CBOW模型
有了上面Negative Sampling负采样的方法和逻辑回归求解模型参数的方法,我们就可以总结出基于Negative Sampling的CBOW模型算法流程了。梯度迭代过程使用了随机梯度上升法:
输入:基于CBOW的语料训练样本,词向量的维度大小$M$,CBOW的上下文大小$2c$,步长$\eta$, 负采样的个数neg
输出:词汇表每个词对应的模型参数$\theta$,所有的词向量$x_w$
1. 随机初始化所有的模型参数$\theta$,所有的词向量$w$
2. 对于每个训练样本$(context(w_0), w_0)$,负采样出neg个负例中心词$w_i, i=1,2,...neg$
3. 进行梯度上升迭代过程,对于训练集中的每一个样本$(context(w_0), w_0,w_1,...w_{neg})$做如下处理:
a) e=0, 计算$x_{w_0}= \frac{1}{2c}\sum\limits_{i=1}^{2c}x_i$
b) for i= 0 to neg, 计算:$$f = \sigma(x_{w_i}^T\theta^{w_i})$$$$g = (y_i-f)\eta$$$$e = e + g\theta^{w_i}$$$$\theta^{w_i}= \theta^{w_i} + gx_{w_i}$$
c) 对于$context(w)$中的每一个词向量$x_j$(共2c个)进行更新:$$x_j = x_j + e$$
d) 如果梯度收敛,则结束梯度迭代,否则回到步骤3继续迭代。
6. 基于Negative Sampling的Skip-Gram模型
有了上一节CBOW的基础和上一篇基于Hierarchical Softmax的Skip-Gram模型基础,我们也可以总结出基于Negative Sampling的Skip-Gram模型算法流程了。梯度迭代过程使用了随机梯度上升法:
输入:基于Skip-Gram的语料训练样本,词向量的维度大小$M$,Skip-Gram的上下文大小$2c$,步长$\eta$, , 负采样的个数neg。
输出:词汇表每个词对应的模型参数$\theta$,所有的词向量$x_w$
1. 随机初始化所有的模型参数$\theta$,所有的词向量$w$
2. 对于每个训练样本$(context(w_0), w_0)$,负采样出neg个负例中心词$w_i, i=1,2,...neg$
3. 进行梯度上升迭代过程,对于训练集中的每一个样本$(context(w_0), w_0,w_1,...w_{neg})$做如下处理:
a) for i =1 to 2c:
i) e=0
ii) for i= 0 to neg, 计算:$$f = \sigma(x_{w_i}^T\theta^{w_i})$$$$g = (y_i-f)\eta$$$$e = e + g\theta^{w_i}$$$$\theta^{w_i}= \theta^{w_i} + gx_{w_i}$$
iii) 对于$context(w)$中的每一个词向量$x_j$(共2c个)进行更新:$$x_j = x_j + e$$
b)如果梯度收敛,则结束梯度迭代,算法结束,否则回到步骤a继续迭代。
7. Negative Sampling的模型源码和算法的对应
这里给出上面算法和word2vec源码中的变量对应关系。
在源代码中,基于Negative Sampling的CBOW模型算法在464-494行,基于Hierarchical Softmax的Skip-Gram的模型算法在520-542行。大家可以对着源代码再深入研究下算法。
在源代码中,neule对应我们上面的$e$, syn0对应我们的$x_w$, syn1neg对应我们的$\theta^{w_i}$, layer1_size对应词向量的维度,window对应我们的$c$。negative对应我们的neg, table_size对应我们负采样中的划分数$M$。
另外,vocab[word].code[d]指的是,当前单词word的,第d个编码,编码不含Root结点。vocab[word].point[d]指的是,当前单词word,第d个编码下,前置的结点。这些和基于Hierarchical Softmax的是一样的。
以上就是基于Negative Sampling的word2vec模型,希望可以帮到大家,后面会讲解用gensim的python版word2vec来使用word2vec解决实际问题。
(欢迎转载,转载请注明出处。欢迎沟通交流: pinard.liu@ericsson.com)
word2vec原理(三) 基于Negative Sampling的模型的更多相关文章
- word2vec原理(二) 基于Hierarchical Softmax的模型
word2vec原理(一) CBOW与Skip-Gram模型基础 word2vec原理(二) 基于Hierarchical Softmax的模型 word2vec原理(三) 基于Negative Sa ...
- word2vec 中的数学原理具体解释(五)基于 Negative Sampling 的模型
word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了非常多人的关注. 因为 word2vec 的作者 Tomas ...
- word2vec原理(一) CBOW与Skip-Gram模型基础
word2vec原理(一) CBOW与Skip-Gram模型基础 word2vec原理(二) 基于Hierarchical Softmax的模型 word2vec原理(三) 基于Negative Sa ...
- word2vec 中的数学原理具体解释(四)基于 Hierarchical Softmax 的模型
word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了非常多人的关注.因为 word2vec 的作者 Tomas M ...
- word2vec 原理浅析 及高效训练方法
1. https://www.cnblogs.com/cymx66688/p/11185824.html (word2vec中的CBOW 和skip-gram 模型 浅析) 2. https://ww ...
- word2vec改进之Negative Sampling
训练网络时往往会对全部的神经元参数进行微调,从而让训练结果更加准确.但在这个网络中,训练参数很多,每次微调上百万的数据是很浪费计算资源的.那么Negative Sampling方法可以通过每次调整很小 ...
- word2vec原理与代码
目录 前言 CBOW模型与Skip-gram模型 基于Hierarchical Softmax框架的CBOW模型 基于Negative Sampling框架的CBOW模型 负采样算法 结巴分词 wor ...
- DL4NLP——词表示模型(三)word2vec(CBOW/Skip-gram)的加速:Hierarchical Softmax与Negative Sampling
上篇博文提到,原始的CBOW / Skip-gram模型虽然去掉了NPLM中的隐藏层从而减少了耗时,但由于输出层仍然是softmax(),所以实际上依然“impractical”.所以接下来就介绍一下 ...
- 词表征 2:word2vec、CBoW、Skip-Gram、Negative Sampling、Hierarchical Softmax
原文地址:https://www.jianshu.com/p/5a896955abf0 2)基于迭代的方法直接学 相较于基于SVD的方法直接捕获所有共现值的做法,基于迭代的方法一次只捕获一个窗口内的词 ...
随机推荐
- C# 禁止ALT+F4(钩子)
1. Windows Forms中禁用窗体的关闭按钮 添加必要的命名空间: using System.Runtime.InteropServices; 添加必要的常数和API函数的引用 priv ...
- noip模拟 市长选举
题目描述 利贝尔王国的卢安市因为前段时间的市长被捕事件,导致没有市长管理城市.他们需要一个新的市长. 竞选的人有两位.一位是诺曼,因支持旅游业而受到支持者的拥护.一位是波尔多斯,代表的是卢安的传统行业 ...
- Lucence_Curd
设置Field的类型 new StringField 不分词(id,身份证号,电话...) new StoredField 不分词(链接) new TextField 分词(文本) new Fload ...
- linux上搭建zookeeper
1.zookeeper介绍 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提 ...
- Vulkan Tutorial 24 Descriptor pool and sets
操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 描述符布局描述了前一章节讨论过的可以绑定的描述符的类型.在 ...
- I/O多路复用之epoll实战
概念 IO多路复用是指内核一旦发现进程指定的一个或者多个IO条件准备读取,它就通知该进程 通俗理解(摘自网上一大神) 这些名词比较绕口,理解涵义就好.一个epoll场景:一个酒吧服务员(一个线程),前 ...
- Python 文件对象
Python 文件对象 1) 内置函数 open() 用于打开和创建文件对象 open(name,[,mode[,bufsize]]) 文件名.模式.缓冲区参数 mode: r 只读 w 写入 a 附 ...
- H3CNE实验:通过Console端口本地访问H3C设备
连接好Console线后,将交换机开机,在SecureCRT上会显示如下信息: Starting...... RAMLine.....OK System is booting............. ...
- (转载)oracle 在一个存储过程中调用另一个返回游标的存储过程
原文链接:http://www.jb51.net/article/20160.htm 实际项目当中经常需要在一个存储过程中调用另一个存储过程返回的游标,本文列举了两种情况讲述具体的操作方法. 第一种情 ...
- springmvc的POST 请求转为 DELETE 或 put 请求配置HiddenHttpMethodFilter
1.web.xml里配置 <!-- 配置 org.springframework.web.filter.HiddenHttpMethodFilter: 可以把 POST 请求转为 DELETE ...