《java.util.concurrent 包源码阅读》21 CyclicBarrier和CountDownLatch
CyclicBarrier是一个用于线程同步的辅助类,它允许一组线程等待彼此,直到所有线程都到达集合点,然后执行某个设定的任务。
现实中有个很好的例子来形容:几个人约定了某个地方集中,然后一起出发去旅行。每个参与的人就是一个线程,CyclicBarrier就是那个集合点,所有人到了之后,就一起出发。
CyclicBarrier的构造函数有两个:
// parties是参与等待的线程的数量,barrierAction是所有线程达到集合点之后要做的动作
public CyclicBarrier(int parties, Runnable barrierAction); // 达到集合点之后不执行操作的构造函数
public CyclicBarrier(int parties)
需要说明的是,CyclicBarrier只是记录线程的数目,CyclicBarrier是不创建任何线程的。线程是通过调用CyclicBarrier的await方法来等待其他线程,如果调用await方法的线程数目达到了预设值,也就是上面构造方法中的parties,CyclicBarrier就会开始执行barrierAction。
因此我们来看CyclicBarrier的核心方法dowait,也就是await方法调用的私有方法:
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Generation g = generation; if (g.broken)
throw new BrokenBarrierException(); if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
// count就是预设的parties,count减1的值表示还剩余几个
// 线程没有达到该集合点
int index = --count;
// index为0表示所有的线程都已经达到集合点,这时
// 占用最后一个线程,执行运行设定的任务
if (index == 0) {
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
// 唤醒其他等待的线程,
// 更新generation以便下一次运行
nextGeneration();
return 0;
} finally {
// 如果运行任务时发生异常,设置状态为broken
// 并且唤醒其他等待的线程
if (!ranAction)
breakBarrier();
}
} // 还有线程没有调用await,进入循环等待直到其他线程
// 达到集合点或者等待超时
for (;;) {
try {
// 如果没有设置超时,进行无超时的等待
if (!timed)
trip.await();
// 有超时设置,进行有超时的等待
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
// generation如果没有被更新表示还是当前的运行
// (generation被更新表示集合完毕并且任务成功),
// 在状态没有被设置为broken状态的情况下,遇到线程
// 中断异常表示当前线程等待失败,需要设置为broken
// 状态,并且抛出中断异常
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// else对应的条件为:g != generation || g.broken
// 表示要么generation已经被更新意味着所有线程已经到达
// 集合点并且任务执行成功,要么就是是broken状态意味着
// 任务执行失败,无论哪种情况所有线程已经达到集合点,当
// 前线程要结束等待了,发生了中断异常,需要中断当前线程
// 表示遇到了中断异常。
Thread.currentThread().interrupt();
}
} // 如果发现当前状态为broken,抛出异常
if (g.broken)
throw new BrokenBarrierException();
// generation被更新表示所有线程都已经达到集合点
// 并且预设任务已经完成,返回该线程进入等待顺序号
if (g != generation)
return index;
// 等待超时,设置为broken状态并且抛出超时异常
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
1. 任何一个线程等待时发生异常,CyclicBarrier都将被设置为broken状态,运行都会失败
2. 每次运行成功之后CyclicBarrier都会清理运行状态,这样CyclicBarrier可以重新使用
3. 对于设置了超时的等待,在发生超时的时候会引起CyclicBarrier的broken
说完了CyclicBarrier,再来说说CountDownLatch。
CountDownLatch同样也是一个线程同步的辅助类,同样适用上面的集合点的场景来解释,但是运行模式完全不同。
CyclicBarrier是参与的所有的线程彼此等待,CountDownLatch则不同,CountDownLatch有一个导游线程在等待,每个线程报到一下即可无须等待,等到导游线程发现所有人都已经报到了,就结束了自己的等待。
CountDownLatch的构造方法允许指定参与的线程数量:
public CountDownLatch(int count)
参与线程使用countDown表示报到:
public void countDown() {
sync.releaseShared(1);
}
看到releaseShared很容易使人联想到共享锁,那么试着用共享锁的运行模式来解释就简单得多了:
和信号量的实现类似,CountDownLatch内置一下有限的共享锁。
每个参与线程拥有一把共享锁,调用countDown就等于是释放了自己的共享锁,导游线程await等于一下子要拿回所有的共享锁。那么基于AbstractQueuedSynchronizer类来实现就很简单了:
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
} public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
在await时注意到数量是1,其实这个参数对于CountDownLatch实现的Sync类(AbstractQueuedSynchronizer的子类)来说是不起作用的,因为需要保证await获取共享锁时必须拿到所有的共享锁,这个参数也就变得没有意义了。看一下Sync的tryAcquireShared方法就明白了:
protected int tryAcquireShared(int acquires) {
// 和信号量Semaphore的实现一样,使用state来存储count,
// 每次释放共享锁就把state减1,state为0表示所有的共享
// 锁已经被释放。注意:这里的acquires参数不起作用
return (getState() == 0) ? 1 : -1;
}
因此Sync的tryReleaseShared就是更新state(每次state减1):
protected boolean tryReleaseShared(int releases) {
// 每次state减1,当state为0,返回false表示所有的共享锁都已经释放
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
CyclicBarrier和CountDownLatch本质上来说都是多个线程同步的辅助工具,前者可以看成分布式的,后者可以看出是主从式。
《java.util.concurrent 包源码阅读》21 CyclicBarrier和CountDownLatch的更多相关文章
- 《java.util.concurrent 包源码阅读》 结束语
<java.util.concurrent 包源码阅读>系列文章已经全部写完了.开始的几篇文章是根据自己的读书笔记整理出来的(当时只阅读了部分的源代码),后面的大部分都是一边读源代码,一边 ...
- 《java.util.concurrent 包源码阅读》13 线程池系列之ThreadPoolExecutor 第三部分
这一部分来说说线程池如何进行状态控制,即线程池的开启和关闭. 先来说说线程池的开启,这部分来看ThreadPoolExecutor构造方法: public ThreadPoolExecutor(int ...
- 《java.util.concurrent 包源码阅读》02 关于java.util.concurrent.atomic包
Aomic数据类型有四种类型:AomicBoolean, AomicInteger, AomicLong, 和AomicReferrence(针对Object的)以及它们的数组类型, 还有一个特殊的A ...
- 《java.util.concurrent 包源码阅读》04 ConcurrentMap
Java集合框架中的Map类型的数据结构是非线程安全,在多线程环境中使用时需要手动进行线程同步.因此在java.util.concurrent包中提供了一个线程安全版本的Map类型数据结构:Concu ...
- 《java.util.concurrent 包源码阅读》17 信号量 Semaphore
学过操作系统的朋友都知道信号量,在java.util.concurrent包中也有一个关于信号量的实现:Semaphore. 从代码实现的角度来说,信号量与锁很类似,可以看成是一个有限的共享锁,即只能 ...
- 《java.util.concurrent 包源码阅读》06 ArrayBlockingQueue
对于BlockingQueue的具体实现,主要关注的有两点:线程安全的实现和阻塞操作的实现.所以分析ArrayBlockingQueue也是基于这两点. 对于线程安全来说,所有的添加元素的方法和拿走元 ...
- 《java.util.concurrent 包源码阅读》09 线程池系列之介绍篇
concurrent包中Executor接口的主要类的关系图如下: Executor接口非常单一,就是执行一个Runnable的命令. public interface Executor { void ...
- 《java.util.concurrent 包源码阅读》05 BlockingQueue
想必大家都很熟悉生产者-消费者队列,生产者负责添加元素到队列,如果队列已满则会进入阻塞状态直到有消费者拿走元素.相反,消费者负责从队列中拿走元素,如果队列为空则会进入阻塞状态直到有生产者添加元素到队列 ...
- 《java.util.concurrent 包源码阅读》10 线程池系列之AbstractExecutorService
AbstractExecutorService对ExecutorService的执行任务类型的方法提供了一个默认实现.这些方法包括submit,invokeAny和InvokeAll. 注意的是来自E ...
随机推荐
- btsync 分享资源
Btsync是一款跨平台软件,可以在不同的设备之间共享文件. Btsync类似于BT下载,用户对用户(多用户)之间的传送. 文档的分享者可以将资源放到文件夹下,生成共享Key,分享给接受者,接受者只需 ...
- Win10 UWP xaml 延迟加载元素
xaml新增x:DeferLoadStrategy里面只有Lazy,查询了百度看到MSP_甄心cherish大神说的 xaml使用x:DeferLoadStrategy="Lazy" ...
- Java 线程基本知识
线程 线程和进程 进程 : 进程指正在运行的程序.确切的来说,当一个程序进入内存运行,即变成一个进程,进程是处于运行过程中的程序,并且具有一定独立功能. 线程 : 线程是进程中的一个执行单元(执行路径 ...
- java中的static关键字详解
static对于我们这些初学者在编写代码和阅读代码是一个难以理解的关键字,也是大量公司面试题最喜欢考的之一.下面我就来就先讲述一下static关键字的用法和我们初学者容易误解的地方. static关键 ...
- 使用Git与Github创建自己的远程仓库
原因 早就想创建一个自己的远程仓库,方便发布到Nuget上,自己用也好,项目组用也好,都方便. 今天抽了个时间建了个仓库,随便记下溜方便后来的人. 流程 1,创建自己的GitHub仓库 首先需要到 G ...
- HTML5的Websocket(理论篇 I)
HTML5的Websocket(理论篇 I) ** 先请来TA的邻居:** http:无状态.基于tcp请求/响应模式的应用层协议 (A:哎呀,上次你请我吃饭了么? B:我想想, 上次请你吃了么) t ...
- LeetCode 532. K-diff Pairs in an Array (在数组中相差k的配对)
Given an array of integers and an integer k, you need to find the number of unique k-diff pairs in t ...
- 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...
- Vue源码后记-vFor列表渲染(1)
钩子函数比较简单,没有什么意思,这一节搞点大事情 => 源码中v-for的渲染过程. vue的内置指令包含了v-html.v-if.v-once.v-bind.v-on.v-show等,先从一个 ...
- BigDecimal与Long之间的转换
新建了一个class类 取名叫Firut import java.math.BigDecimal; public class Firut { private String id; private Bi ...