Chinese Rings

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 46 Accepted Submission(s): 29
 
Problem Description
Dumbear likes to play the Chinese Rings (Baguenaudier). It’s a game played with nine rings on a bar. The rules of this game are very simple: At first, the nine rings are all on the bar.
The first ring can be taken off or taken on with one step.
If the first k rings are all off and the (k + 1)th ring is on, then the (k + 2)th ring can be taken off or taken on with one step. (0 ≤ k ≤ 7)

Now consider a game with N (N ≤ 1,000,000,000) rings on a bar, Dumbear wants to make all the rings off the bar with least steps. But Dumbear is very dumb, so he wants you to help him.

 
Input
Each line of the input file contains a number N indicates the number of the rings on the bar. The last line of the input file contains a number "0".
 
Output
For each line, output an integer S indicates the least steps. For the integers may be very large, output S mod 200907.
 
Sample Input
1
4
0
 
Sample Output
1
10
 
 
Source
2009 Multi-University Training Contest 3 - Host by WHU
 
Recommend
gaojie
 
/*
题意:给你一个n连环,让你输出解n连环的最少步骤数。定义了一个规则,取下第k个环的要求是,k+1在环上,
前k+2个不在环上 初步思路:这种题看到1e9的数据量,结果一般都是找规律的。给定n个环和规则:如果想取下第n个环那么要保
证前n-2都取下,第n-1还在,那么假设F(n) 为接下n的最短时间,那么想要解下n,必须先加下F(n-2),然后
解下n,然后解下F(n-1),想要解下F(n-1)就要先解下F(n-2)+1,所以得到:f[n]=2*f[n-2]+f[n-1]+1 #错误:中间有什么地方爆了int,重载乘号运算符的时候爆了int
*/
#include<bits/stdc++.h>
#define mod 200907
#define ll long long
using namespace std;
/********************************矩阵模板**********************************/
class Matrix {
public:
int a[][]; void init(int x) {
memset(a,,sizeof(a));
if(x==){
a[][]=;
a[][]=;
}else{
a[][]=;
a[][]=;
a[][]=;
a[][]=;
a[][]=;
}
} Matrix operator +(Matrix b) {
Matrix c;
for (int i = ; i < ; i++)
for (int j = ; j < ; j++)
c.a[i][j] = (a[i][j] + b.a[i][j]) % mod;
return c;
} Matrix operator +(int x) {
Matrix c = *this;
for (int i = ; i < ; i++)
c.a[i][i] += x;
return c;
} Matrix operator *(Matrix b)
{
Matrix p;
memset(p.a,,sizeof p.a);
for (int i = ; i < ; i++)
for (int j = ; j < ; j++)
for (int k = ; k < ; k++)
p.a[i][j] = (p.a[i][j] + ( (ll)( (ll)a[i][k]* (ll) b.a[k][j])%mod ) )% mod;
return p;
} Matrix power_1(int t) {
Matrix ans,p = *this;
memset(ans.a,,sizeof ans.a);
for(int i=;i<;i++){
ans.a[i][i]=;
}
while (t) {
if (t & )
ans=ans*p;
p = p*p;
t >>= ;
}
return ans;
} Matrix power_2(Matrix a,Matrix b,int x){
while(x){
if(x&){
b=a*b;
}
a=a*a;
x>>=;
}
return b;
}
}unit,init;
/********************************矩阵模板**********************************/
int n;
int main(){
// freopen("in.txt","r",stdin);
while(scanf("%d",&n)!=EOF&&n){
unit.init();
init.init();
if(n<=){
printf("%d\n",n);
continue;
}
init=init.power_1(n-);
printf("%d\n",( (unit*init).a[][]+mod )%mod);
}
return ;
}

Chinese Rings的更多相关文章

  1. Chinese Rings hdu 2842 矩阵快速幂

    Chinese Rings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  2. HDU 2842 Chinese Rings(常数矩阵)

    Chinese Rings 转载自:点这里 [题目链接]Chinese Rings [题目类型]常数矩阵 &题意: 一种中国环,解开第k个环需要先解开全部的前(k-2)个环,并留有第(k-1) ...

  3. Chinese Rings (九连环+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目: Problem Description Dumbear likes to play th ...

  4. hdu 2842 Chinese Rings

    点击打开hdu2842 思路: 矩阵快速幂 分析: 1 题目的意思是给定n个环,和一些规则要把所有的环全部拆下最少需要的步数 2 题目规定如果要拆第n个环,那么第n-1个要挂着,n-2环要被拆下.那么 ...

  5. HDU2842—Chinese Rings

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目意思:一把一个n连环的前n个拿下来,一个个n连环,要把第k个拿下来,需要把前n-2个拿下来, ...

  6. HDU 2842 Chinese Rings( 递推关系式 + 矩阵快速幂 )

    链接:传送门 题意:解 N 连环最少步数 % 200907 思路:对于 N 连环来说,解 N 连环首先得先解 N-2 连环然后接着解第 N 个环,然后再将前面 N-2 个环放到棍子上,然后 N 连环问 ...

  7. HDU 2842 Chinese Rings(矩阵高速功率+递归)

    职务地址:HDU 2842 这个游戏是一个九连环的游戏. 如果当前要卸下前n个环.由于要满足前n-2个都卸下,所以要先把前n-2个卸下.须要f(n-2)次.然后把第n个卸下须要1次,然后这时候要卸下第 ...

  8. hdu 2842 Chinese Rings 矩阵快速幂

    分析: 后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响.所以先取最后面的环 设状态F(n)表示n个环全部取下来的最少步数 先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1 ...

  9. HDU2842 矩阵乘法

    Chinese Rings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

随机推荐

  1. Angular2组件与指令的小实践

    如果说模块系统是Angular2的灵魂,那其组件体系就是其躯体,在模块的支持下渲染出所有用户直接看得见的东西,一个项目最表层的东西就是组件呈现的视图.而除了直接看的见的躯体之外,一个完整的" ...

  2. 【Kafka】

    KafkaProducer Kafka消息发布客户端. 线程安全,跨线程共享单个生产者实例通常比拥有多个实例的速度更快. 例子,使用生产者发送包含序列号的字符串作为键/值对的记录: Propertie ...

  3. Java线程池详解

    一.线程池初探 所谓线程池,就是将多个线程放在一个池子里面(所谓池化技术),然后需要线程的时候不是创建一个线程,而是从线程池里面获取一个可用的线程,然后执行我们的任务.线程池的关键在于它为我们管理了多 ...

  4. Android Studio安装应用时报错 installation failed with message Failed to finalize session......

    解决方法: 在AndroidManifest.xml中的provider中的authorities后加几个数字即可. 2017.09.01: 我发现有的项目AndroidManifest.xml中没有 ...

  5. JavaScript链式调用

    1.什么是链式调用? 这个很容易理解,例如 $('text').setStyle('color', 'red').show(); 一般的函数调用和链式调用的区别:链式调用完方法后,return thi ...

  6. Python数据可视化利器Matplotlib,绘图入门篇,Pyplot介绍

    Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在 ...

  7. zoj1871steps 数学 水

                                                                                            zoj1871 题目大意 ...

  8. 深入浅出WPF——附加事件(Attached Event)

    3.3 事件也附加——深入浅出附加事件 WPF事件系统中还有一种事件被称为附加事件(Attached Event),简言之,它就是路由事件.“那为什么还要起个新名字呢?”你可能会问. “身无彩凤双飞翼 ...

  9. JavaScript面向对象基础与this指向问题

      前  言           我们的程序语言经历了从"面向机器".到"面向过程".再到"面向对象"的一个过程.而JavaScript是一 ...

  10. Echarts数据可视化parallel平行坐标系,开发全解+完美注释

    全栈工程师开发手册 (作者:栾鹏) Echarts数据可视化开发代码注释全解 Echarts数据可视化开发参数配置全解 6大公共组件详解(点击进入): title详解. tooltip详解.toolb ...