Chinese Rings
Chinese Rings |
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
Total Submission(s): 46 Accepted Submission(s): 29 |
Problem Description
Dumbear likes to play the Chinese Rings (Baguenaudier). It’s a game played with nine rings on a bar. The rules of this game are very simple: At first, the nine rings are all on the bar.
The first ring can be taken off or taken on with one step. If the first k rings are all off and the (k + 1)th ring is on, then the (k + 2)th ring can be taken off or taken on with one step. (0 ≤ k ≤ 7) Now consider a game with N (N ≤ 1,000,000,000) rings on a bar, Dumbear wants to make all the rings off the bar with least steps. But Dumbear is very dumb, so he wants you to help him. |
Input
Each line of the input file contains a number N indicates the number of the rings on the bar. The last line of the input file contains a number "0".
|
Output
For each line, output an integer S indicates the least steps. For the integers may be very large, output S mod 200907.
|
Sample Input
1 |
Sample Output
1 |
Source
2009 Multi-University Training Contest 3 - Host by WHU
|
Recommend
gaojie
|
/*
题意:给你一个n连环,让你输出解n连环的最少步骤数。定义了一个规则,取下第k个环的要求是,k+1在环上,
前k+2个不在环上 初步思路:这种题看到1e9的数据量,结果一般都是找规律的。给定n个环和规则:如果想取下第n个环那么要保
证前n-2都取下,第n-1还在,那么假设F(n) 为接下n的最短时间,那么想要解下n,必须先加下F(n-2),然后
解下n,然后解下F(n-1),想要解下F(n-1)就要先解下F(n-2)+1,所以得到:f[n]=2*f[n-2]+f[n-1]+1 #错误:中间有什么地方爆了int,重载乘号运算符的时候爆了int
*/
#include<bits/stdc++.h>
#define mod 200907
#define ll long long
using namespace std;
/********************************矩阵模板**********************************/
class Matrix {
public:
int a[][]; void init(int x) {
memset(a,,sizeof(a));
if(x==){
a[][]=;
a[][]=;
}else{
a[][]=;
a[][]=;
a[][]=;
a[][]=;
a[][]=;
}
} Matrix operator +(Matrix b) {
Matrix c;
for (int i = ; i < ; i++)
for (int j = ; j < ; j++)
c.a[i][j] = (a[i][j] + b.a[i][j]) % mod;
return c;
} Matrix operator +(int x) {
Matrix c = *this;
for (int i = ; i < ; i++)
c.a[i][i] += x;
return c;
} Matrix operator *(Matrix b)
{
Matrix p;
memset(p.a,,sizeof p.a);
for (int i = ; i < ; i++)
for (int j = ; j < ; j++)
for (int k = ; k < ; k++)
p.a[i][j] = (p.a[i][j] + ( (ll)( (ll)a[i][k]* (ll) b.a[k][j])%mod ) )% mod;
return p;
} Matrix power_1(int t) {
Matrix ans,p = *this;
memset(ans.a,,sizeof ans.a);
for(int i=;i<;i++){
ans.a[i][i]=;
}
while (t) {
if (t & )
ans=ans*p;
p = p*p;
t >>= ;
}
return ans;
} Matrix power_2(Matrix a,Matrix b,int x){
while(x){
if(x&){
b=a*b;
}
a=a*a;
x>>=;
}
return b;
}
}unit,init;
/********************************矩阵模板**********************************/
int n;
int main(){
// freopen("in.txt","r",stdin);
while(scanf("%d",&n)!=EOF&&n){
unit.init();
init.init();
if(n<=){
printf("%d\n",n);
continue;
}
init=init.power_1(n-);
printf("%d\n",( (unit*init).a[][]+mod )%mod);
}
return ;
}
Chinese Rings的更多相关文章
- Chinese Rings hdu 2842 矩阵快速幂
Chinese Rings Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- HDU 2842 Chinese Rings(常数矩阵)
Chinese Rings 转载自:点这里 [题目链接]Chinese Rings [题目类型]常数矩阵 &题意: 一种中国环,解开第k个环需要先解开全部的前(k-2)个环,并留有第(k-1) ...
- Chinese Rings (九连环+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目: Problem Description Dumbear likes to play th ...
- hdu 2842 Chinese Rings
点击打开hdu2842 思路: 矩阵快速幂 分析: 1 题目的意思是给定n个环,和一些规则要把所有的环全部拆下最少需要的步数 2 题目规定如果要拆第n个环,那么第n-1个要挂着,n-2环要被拆下.那么 ...
- HDU2842—Chinese Rings
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目意思:一把一个n连环的前n个拿下来,一个个n连环,要把第k个拿下来,需要把前n-2个拿下来, ...
- HDU 2842 Chinese Rings( 递推关系式 + 矩阵快速幂 )
链接:传送门 题意:解 N 连环最少步数 % 200907 思路:对于 N 连环来说,解 N 连环首先得先解 N-2 连环然后接着解第 N 个环,然后再将前面 N-2 个环放到棍子上,然后 N 连环问 ...
- HDU 2842 Chinese Rings(矩阵高速功率+递归)
职务地址:HDU 2842 这个游戏是一个九连环的游戏. 如果当前要卸下前n个环.由于要满足前n-2个都卸下,所以要先把前n-2个卸下.须要f(n-2)次.然后把第n个卸下须要1次,然后这时候要卸下第 ...
- hdu 2842 Chinese Rings 矩阵快速幂
分析: 后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响.所以先取最后面的环 设状态F(n)表示n个环全部取下来的最少步数 先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1 ...
- HDU2842 矩阵乘法
Chinese Rings Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
随机推荐
- Angular2组件与指令的小实践
如果说模块系统是Angular2的灵魂,那其组件体系就是其躯体,在模块的支持下渲染出所有用户直接看得见的东西,一个项目最表层的东西就是组件呈现的视图.而除了直接看的见的躯体之外,一个完整的" ...
- 【Kafka】
KafkaProducer Kafka消息发布客户端. 线程安全,跨线程共享单个生产者实例通常比拥有多个实例的速度更快. 例子,使用生产者发送包含序列号的字符串作为键/值对的记录: Propertie ...
- Java线程池详解
一.线程池初探 所谓线程池,就是将多个线程放在一个池子里面(所谓池化技术),然后需要线程的时候不是创建一个线程,而是从线程池里面获取一个可用的线程,然后执行我们的任务.线程池的关键在于它为我们管理了多 ...
- Android Studio安装应用时报错 installation failed with message Failed to finalize session......
解决方法: 在AndroidManifest.xml中的provider中的authorities后加几个数字即可. 2017.09.01: 我发现有的项目AndroidManifest.xml中没有 ...
- JavaScript链式调用
1.什么是链式调用? 这个很容易理解,例如 $('text').setStyle('color', 'red').show(); 一般的函数调用和链式调用的区别:链式调用完方法后,return thi ...
- Python数据可视化利器Matplotlib,绘图入门篇,Pyplot介绍
Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在 ...
- zoj1871steps 数学 水
zoj1871 题目大意 ...
- 深入浅出WPF——附加事件(Attached Event)
3.3 事件也附加——深入浅出附加事件 WPF事件系统中还有一种事件被称为附加事件(Attached Event),简言之,它就是路由事件.“那为什么还要起个新名字呢?”你可能会问. “身无彩凤双飞翼 ...
- JavaScript面向对象基础与this指向问题
前 言 我们的程序语言经历了从"面向机器".到"面向过程".再到"面向对象"的一个过程.而JavaScript是一 ...
- Echarts数据可视化parallel平行坐标系,开发全解+完美注释
全栈工程师开发手册 (作者:栾鹏) Echarts数据可视化开发代码注释全解 Echarts数据可视化开发参数配置全解 6大公共组件详解(点击进入): title详解. tooltip详解.toolb ...