(转)Spark JAVA RDD API
对API的解释:
1.1 transform
l map(func):对调用map的RDD数据集中的每个element都使用func,然后返回一个新的RDD,这个返回的数据集是分布式的数据集
l filter(func) : 对调用filter的RDD数据集中的每个元素都使用func,然后返回一个包含使func为true的元素构成的RDD
l flatMap(func):和map差不多,但是flatMap生成的是多个结果
l mapPartitions(func):和map很像,但是map是每个element,而mapPartitions是每个partition
l mapPartitionsWithSplit(func):和mapPartitions很像,但是func作用的是其中一个split上,所以func中应该有index
l sample(withReplacement,faction,seed):抽样
l union(otherDataset):返回一个新的dataset,包含源dataset和给定dataset的元素的集合
l distinct([numTasks]):返回一个新的dataset,这个dataset含有的是源dataset中的distinct的element
l groupByKey(numTasks):返回(K,Seq[V]),也就是Hadoop中reduce函数接受的key-valuelist
l reduceByKey(func,[numTasks]):就是用一个给定的reduce func再作用在groupByKey产生的(K,Seq[V]),比如求和,求平均数
l sortByKey([ascending],[numTasks]):按照key来进行排序,是升序还是降序,ascending是boolean类型
1.2 action
l reduce(func):说白了就是聚集,但是传入的函数是两个参数输入返回一个值,这个函数必须是满足交换律和结合律的
l collect():一般在filter或者足够小的结果的时候,再用collect封装返回一个数组
l count():返回的是dataset中的element的个数
l first():返回的是dataset中的第一个元素
l take(n):返回前n个elements
l takeSample(withReplacement,num,seed):抽样返回一个dataset中的num个元素,随机种子seed
l saveAsTextFile(path):把dataset写到一个text file中,或者hdfs,或者hdfs支持的文件系统中,spark把每条记录都转换为一行记录,然后写到file中
l saveAsSequenceFile(path):只能用在key-value对上,然后生成SequenceFile写到本地或者hadoop文件系统
l countByKey():返回的是key对应的个数的一个map,作用于一个RDD
l foreach(func):对dataset中的每个元素都使用func
以下是案例:
/*数据情况
a 1
b 2
c 3
d 4
e 5*/
主函数:
public class SparkCoreTest
{
public static void main( String[] args )
{
if(args.length<1){
System.out.println("请输入参数!");
}
String filepath=args[0];
JavaSparkContext sc =JavaSparkContextFactory.getJavaSparkContext("sparkCoreTest");
JavaRDD<String> rdd=sc.textFile(filepath);
--transform
//testSparkCoreApiMap(logData);
//testSparkCoreApiFilter(rdd);
//testSparkCoreApiFlatMap(rdd);
//testSparkCoreApiUnion(rdd);
// testSparkCoreApiDistinct(rdd);
// testSparkCoreApiMaptoPair(rdd);
//testSparkCoreApiGroupByKey(rdd);
//testSparkCoreApiReduceByKey(rdd);
--action
testSparkCoreApiReduce(rdd);
}
/**
* Map主要是对数据进行处理,不进行数据集的增减
*
* 本案例实现,打印所有数据
*
* @param rdd
*/
private static void testSparkCoreApiMap(JavaRDD<String> rdd){
JavaRDD<String> logData1=rdd.map(new Function<String,String>(){
public String call(String s){
return s;
}
});
List list = logData1.collect();
for (int i = 0; i < list.size(); i++) {
System.out.println(list.get(i));
}
}
/*
*
*
* filter主要是过滤数据的功能
* 本案例实现:过滤含有a的那行数据
*
*
*/
private static void testSparkCoreApiFilter(JavaRDD<String> rdd){
JavaRDD<String> logData1=rdd.filter(new Function<String,Boolean>(){
public Boolean call(String s){
return (s.split(" "))[0].equals("a");
}
});
List list = logData1.collect();
for (int i = 0; i < list.size(); i++) {
System.out.println(list.get(i));
}
}
/*
*
*
* flatMap 用户行转列
* 本案例实现:打印所有的字符
*
*
*/
private static void testSparkCoreApiFlatMap(JavaRDD<String> rdd){
JavaRDD<String> words=rdd.flatMap(
new FlatMapFunction<String, String>() {
public Iterable<String> call(String s) throws Exception {
return Arrays.asList(s.split(" "));
}
}
);
List list = words.collect();
for (int i = 0; i < list.size(); i++) {
System.out.println(list.get(i));
}
}
/**
* testSparkCoreApiUnion
* 合并两个RDD
* @param rdd
*/
private static void testSparkCoreApiUnion(JavaRDD<String> rdd){
JavaRDD<String> unionRdd=rdd.union(rdd);
unionRdd.foreach(new VoidFunction<String>(){
public void call(String lines){
System.out.println(lines);
}
});
}
/**
* testSparkCoreApiDistinct Test
* 对RDD去重
* @param rdd
*/
private static void testSparkCoreApiDistinct(JavaRDD<String> rdd){
JavaRDD<String> unionRdd=rdd.union(rdd).distinct();
unionRdd.foreach(new VoidFunction<String>(){
public void call(String lines){
System.out.println(lines);
}
});
}
/**
* testSparkCoreApiMaptoPair Test
* 把RDD映射为键值对类型的数据
* @param rdd
*/
private static void testSparkCoreApiMaptoPair(JavaRDD<String> rdd){
JavaPairRDD<String, Integer> pairRdd=rdd.mapToPair(new PairFunction<String,String,Integer>(){
@Override
public Tuple2<String, Integer> call(String t) throws Exception {
String[] st=t.split(" ");
return new Tuple2(st[0], st[1]);
}
});
pairRdd.foreach(new VoidFunction<Tuple2<String, Integer>>(){
@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t._2());
}
});
}
/**
* testSparkCoreApiGroupByKey Test
* 对键值对类型的数据进行按键值合并
* @param rdd
*/
private static void testSparkCoreApiGroupByKey(JavaRDD<String> rdd){
JavaPairRDD<String, Integer> pairRdd=rdd.mapToPair(new PairFunction<String,String,Integer>(){
@Override
public Tuple2<String, Integer> call(String t) throws Exception {
String[] st=t.split(" ");
return new Tuple2(st[0], Integer.valueOf(st[1]));
}
});
JavaPairRDD<String, Iterable<Integer>> pairrdd2= pairRdd.union(pairRdd).groupByKey();
pairrdd2.foreach(new VoidFunction<Tuple2<String, Iterable<Integer>>>(){
@Override
public void call(Tuple2<String, Iterable<Integer>> t) throws Exception {
Iterable<Integer> iter = t._2();
for (Integer integer : iter) {
System.out.println(integer);
}
}
});
}
/**
* testSparkCoreApiReduceByKey
* 对键值对进行按键相同的对值进行操作
* @param rdd
*/
private static void testSparkCoreApiReduceByKey(JavaRDD<String> rdd){
JavaPairRDD<String, Integer> pairRdd=rdd.mapToPair(new PairFunction<String,String,Integer>(){
@Override
public Tuple2<String, Integer> call(String t) throws Exception {
String[] st=t.split(" ");
return new Tuple2(st[0], Integer.valueOf(st[1]));
}
});
JavaPairRDD<String, Integer> pairrdd2 =pairRdd.union(pairRdd).reduceByKey(
new Function2<Integer,Integer,Integer>(){
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
}
}
).sortByKey() ;
pairrdd2.foreach(new VoidFunction<Tuple2<String, Integer>>(){
@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t._2());
}
});
}
/**
* testSparkCoreApiReduce
* 对RDD进行递归调用
* @param rdd
*/
private static void testSparkCoreApiReduce(JavaRDD<String> rdd){
//由于原数据是String,需要转为Integer才能进行reduce递归
JavaRDD<Integer> rdd1=rdd.map(new Function<String,Integer>(){
@Override
public Integer call(String v1) throws Exception {
// TODO Auto-generated method stub
return Integer.valueOf(v1.split(" ")[1]);
}
});
Integer a= rdd1.reduce(new Function2<Integer,Integer,Integer>(){
@Override
public Integer call(Integer v1,Integer v2) throws Exception {
return v1+v2;
}
});
System.out.println(a);
}
}
(转)Spark JAVA RDD API的更多相关文章
- APACHE SPARK 2.0 API IMPROVEMENTS: RDD, DATAFRAME, DATASET AND SQL
What’s New, What’s Changed and How to get Started. Are you ready for Apache Spark 2.0? If you are ju ...
- Spark Java API 计算 Levenshtein 距离
Spark Java API 计算 Levenshtein 距离 在上一篇文章中,完成了Spark开发环境的搭建,最终的目标是对用户昵称信息做聚类分析,找出违规的昵称.聚类分析需要一个距离,用来衡量两 ...
- Spark Java API 之 CountVectorizer
Spark Java API 之 CountVectorizer 由于在Spark中文本处理与分析的一些机器学习算法的输入并不是文本数据,而是数值型向量.因此,需要进行转换.而将文本数据转换成数值型的 ...
- spark (java API) 在Intellij IDEA中开发并运行
概述:Spark 程序开发,调试和运行,intellij idea开发Spark java程序. 分两部分,第一部分基于intellij idea开发Spark实例程序并在intellij IDEA中 ...
- 在 IntelliJ IDEA 中配置 Spark(Java API) 运行环境
1. 新建Maven项目 初始Maven项目完成后,初始的配置(pom.xml)如下: 2. 配置Maven 向项目里新建Spark Core库 <?xml version="1.0& ...
- Spark中RDD转换成DataFrame的两种方式(分别用Java和Scala实现)
一:准备数据源 在项目下新建一个student.txt文件,里面的内容为: ,zhangsan, ,lisi, ,wanger, ,fangliu, 二:实现 Java版: 1.首先新建一个s ...
- Spark RDD API扩展开发
原文链接: Spark RDD API扩展开发(1) Spark RDD API扩展开发(2):自定义RDD 我们都知道,Apache Spark内置了很多操作数据的API.但是很多时候,当我们在现实 ...
- spark中RDD的转化操作和行动操作
本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当 ...
- [转]Spark学习之路 (三)Spark之RDD
Spark学习之路 (三)Spark之RDD https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? ...
随机推荐
- 快速设计ComboBox下拉框
传统软件项目开发时,需要每个控件一个一个的来设计,同时需要在页面功能中对每个控件的属性进行判定处理,尤其是页面风格布局样式需要花去一大半的时间,并且后续要想修改是非常麻烦繁琐,这样就导致设计完成一个功 ...
- oracle查询用户权限及角色(摘)
1.查看所有用户: select * from dba_users; select * from all_users; select * from user_users; 2.查看用户或角色系统权限( ...
- M方法
ThinkPHP函数详解:M方法 M方法用于实例化一个基础模型类,和D方法的区别在于:1.不需要自定义模型类,减少IO加载,性能较好:2.实例化后只能调用基础模型类(默认是Model类)中的方法:3. ...
- Select()使用否?
David Treadwell ,Windows Socket 的一位开发者,曾经在他的一篇名为"Developing Transport-Independent Applications ...
- 非常有用的css使用总结
积小流以成江海,很多东西你不总结就不是你的东西 常用css总结: /*设置字体*/ @font-face { font-family: 'myFont'; src: url('../font/myFo ...
- SQL Server 锁机制 悲观锁 乐观锁 实测解析
先引入一些概念,直接Copy其他Blogs中的,我就不单独写了. 一.为什么会有锁 多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 1.丢失更新 A,B两个用户读同一数据并进行修改,其中 ...
- vuejs2-生命周期
https://segmentfault.com/a/1190000008879966 1 声明周期图示 2 过渡
- html阶段测试
1.简述src和href的区别? 2.在html页面的head中定义属性<meta http-equiv="X-UA-Compatible" content="IE ...
- SqlServer批量备份多个数据库且删除3天前的备份
/******************************************* * 批量备份数据库且删除3天前的备份 ************************************ ...
- 关于SEO的一些见解---关键词的选取布局以及内外链的建设
前言 SEO是英文 Search EngineOptimiation的缩写,中文翻译为"搜索引擎优化"简单地说, SEO就是从搜索引擎上获得流量的技术 . 搜索引掌优化的主 ...