题意:给定一个如上的长方形箱子,中间有n条线段,将其分为n+1个区域,给定m个玩具的坐标,统计每个区域中的玩具个数。

题解:通过斜率判断一个点是否在两条线段之间。

/**
通过斜率比较点是否在两线段之间
*/ #include"iostream"
#include"cstdio"
#include"algorithm"
#include"cstring"
using namespace std;
const int N=1005; struct edgeP //边上的一个点
{
int x1,x2;
}e[N]; struct point
{
int x,y;
}p[N]; int cmp(edgeP a,edgeP b)
{
return a.x1<=b.x1;
} int x1,y1,x2,y2; bool is_z(point e1,point e2) // /型斜线
{
if((e1.y-e2.y)*(e1.x-e2.x)>=0)
return true;
else
return false;
} bool is_f(point e1,point e2) // \型斜线
{
if((e1.y-e2.y)*(e1.x-e2.x)<=0)
return true;
else
return false;
} bool is_inzr(point e1,point e2,point p) // 在/型斜线的右边
{
if((e1.y-e2.y)*(e1.x-e2.x)>=0)
{
if((p.x-e2.x>0)&&(e1.y-e2.y)*(p.x-e2.x)>(p.y-e2.y)*(e1.x-e2.x))
return true;
}
return false;
} bool is_infl(point e1,point e2,point p) // 在\型斜线的左边
{
if((e1.y-e2.y)*(e1.x-e2.x)<=0)
{
if((p.x-e2.x<0)&&(e1.y-e2.y)*(p.x-e2.x)<(p.y-e2.y)*(e1.x-e2.x))
return true;
}
return false;
} bool is_in(point e1,point e2,point e3,point e4,point p) // 点是否在两线内
{
if((is_z(e1,e2)&&is_inzr(e1,e2,p))&&(is_f(e3,e4)&&is_infl(e3,e4,p))) // 点在/.\型两线间
return true;
if((is_z(e1,e2)&&is_inzr(e1,e2,p))&&(is_z(e3,e4)&&!is_inzr(e3,e4,p))) // 点在/./型两线间
return true;
if((is_f(e1,e2)&&!is_infl(e1,e2,p))&&(is_f(e3,e4)&&is_infl(e3,e4,p))) //点在\.\型两线间
return true;
if((is_f(e1,e2)&&!is_infl(e1,e2,p))&&(is_z(e3,e4)&&!is_inzr(e3,e4,p))) //点在\./型两线间
return true;
return false;
} int main()
{
int n,m;
while(cin>>n)
{
if(n==0)
return 0;
e[0].x1=0,e[0].x2=0;
cin>>m>>x1>>y1>>x2>>y2;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&e[i].x1,&e[i].x2);
}
for(int i=0;i<m;i++)
{
scanf("%d%d",&p[i].x,&p[i].y);
}
e[n+1].x1=x2,e[n+1].x2=x2;
sort(e,e+n+2,cmp);
int cnt[N];
memset(cnt,0,sizeof(cnt));
for(int i=0;i<=n;i++)
{
for(int j=0;j<m;j++)
{ point e1,e2;
e1.x=e[i].x1,e1.y=y1;
e2.x=e[i].x2,e2.y=y2;
point e3,e4;
e3.x=e[i+1].x1,e3.y=y1;
e4.x=e[i+1].x2,e4.y=y2;
/*{
cout<<'('<<e1.x<<','<<e1.y<<')'<<" "<<'('<<e2.x<<','<<e2.y<<')'<<endl;
cout<<'('<<e3.x<<','<<e3.y<<')'<<" "<<'('<<e4.x<<','<<e4.y<<')'<<endl;
cout<<'('<<p[j].x<<','<<p[j].y<<')'<<endl;
}*/
if(is_in(e1,e2,e3,e4,p[j]))
{
cnt[i]++;
//cout<<"cnt"<<i<<"++++++++++++++++++++++"<<endl;
}
}
//cout<<"-------------------------------------------"<<endl;
}
/*for(int i=0;i<=n;i++)
{
cout<<cnt[i]<<' ';
}*/
sort(cnt,cnt+n+1);
puts("Box");
int j=cnt[0],count=1;
cnt[n+1]=-10;
for(int i=1;i<=n+1;i++)
{
if(cnt[i]==j)
{
count++;
}
else
{
if(j!=0)
printf("%d: %d\n",j,count);
j=cnt[i];
count=1;
}
}
}
}

 

 

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore. 
Reza's parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top: 

We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.

Input

The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.

A line consisting of a single 0 terminates the input.

Output

For each box, first provide a header stating "Box" on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.

Sample Input

4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0

Sample Output

Box
2: 5
Box
1: 4
2: 1

POJ 2398 Toy Storage(计算几何)的更多相关文章

  1. poj 2398 Toy Storage(计算几何)

    题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...

  2. poj 2398 Toy Storage(计算几何 点线关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4588   Accepted: 2718 Descr ...

  3. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  4. POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3146   Accepted: 1798 Descr ...

  5. 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)

    Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...

  6. POJ 2398 - Toy Storage 点与直线位置关系

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5439   Accepted: 3234 Descr ...

  7. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  8. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  9. POJ 2398 Toy Storage (叉积判断点和线段的关系)

    题目链接 Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4104   Accepted: 2433 ...

随机推荐

  1. 【WCF】为终结点地址应用地址头

    记得不久前,老周写过博文,探讨过在ContextScope以一定的范内向发出的消息中插入消息头,scope只能为特定的某一次服务操作的调用而添加SOAP头,要是需要在每次调用操作协定的时候都插上Hea ...

  2. 【Win 10 应用开发】共享目标(UWP)

    在开始吹牛之前,先给大伙伴们拜个年,祝各位身体健康.生活愉快.[码]到功成. ------------------------------------------------------------- ...

  3. VS2010中dll不可用问题

    最近做项目的时候,深圳那边提供了一个算法.算法在那边跑的好的很,但是在我这边怎么跑都跑不起来,总是报错:说找不到dll. 1.第一种想法:找不到dll,是不是dll放的位置不对.找了一下目录,导入的路 ...

  4. 2、摘要函数——MD2/MD4/MD5数字签名

    摘要是用来防止数据被私自改动的方法,其中用到的函数叫做摘要函数.这些函数的输入可以是任意大小的信息,但是输出是大小固定的摘要.摘要有个重要的特性:如果改变了输入信息的任何内容,即使改变一位,输出也将发 ...

  5. HBase框架学习之路

    1 背景知识 1.1 解决问题 解决HDFS不支持单条记录的快速查找和更新的问题. 1.2 适用情况 存在亿万条记录的数据库,只有千万或者百万条记录使用RDBMS更加合适 确保你的应用不需要使用RDB ...

  6. window.name实现的跨域数据传输

    这篇文章是对 JavaScript跨域总结与解决办法 的补充. 有三个页面: a.com/app.html:应用页面. a.com/proxy.html:代理文件,一般是一个没有任何内容的html文件 ...

  7. 从接口、抽象类到工厂模式再到JVM来总结一些问题

    俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习! 涉及到的知识点总结如下: 为什么使用接口? 接口和抽象类的区别 简单工厂模式总结 Java中new和newInstance的区别 J ...

  8. CentOS7下安装mysql5.6修改字符集为utf8并开放端口允许远程访问

    前言 mysql最初的免费战略已经深入人心,感觉自己一直都在用mysql.今天在centos7下装mysql.发现原来centos下默认没有mysql,因为开始收费了,取而代之的是另一个mysql的分 ...

  9. 高德地图API 简单使用

    主要是功能是 在地图上添加标记点.在标记点添加相应的内容.单击查看内容.双击直接进入相应的项目系统. <!DOCTYPE html> <html xmlns="http:/ ...

  10. vs2015 已经支持开发asp .net core 1.0 rc2 程序了

    vs2015 已经支持开发asp .net core 1.0 rc2 程序了 http://mp.weixin.qq.com/s?__biz=MzI0MzM1ODczOQ==&mid=2247 ...