YYHS-NOIP2017SummerTraining0914-问题 A: 组合数问题
题目描述
|
输入
输出
样例输入
样例输出
提示
测试点
|
n
|
m
|
k
|
t
|
1
|
≤3
|
≤3
|
=2
|
=1
|
2
|
=3
|
≤104
|
||
3
|
≤7
|
≤7
|
=4
|
=1
|
4
|
=5
|
≤104
|
||
5
|
≤10
|
≤10
|
=6
|
=1
|
6
|
=7
|
≤104
|
||
7
|
≤20
|
≤100
|
=8
|
=1
|
8
|
=9
|
≤104
|
||
9
|
≤25
|
≤2000
|
=10
|
=1
|
10
|
=11
|
≤104
|
||
11
|
≤60
|
≤20
|
=12
|
=1
|
12
|
=13
|
≤104
|
||
13
|
≤100
|
≤25
|
=14
|
=1
|
14
|
=15
|
≤104
|
||
15
|
≤60
|
=16
|
=1
|
|
16
|
=17
|
≤104
|
||
17
|
≤2000
|
≤100
|
=18
|
=1
|
18
|
=19
|
≤104
|
||
19
|
≤2000
|
=20
|
=1
|
|
20
|
=21
|
≤104
|
题解
#include<bits/stdc++.h>
#define N 2005
using namespace std;
int T,k,n,m,ans;
int c[N][N],s[N][N];
int main(){
scanf("%d%d",&T,&k);
c[][]=;
for (int i=;i<=N-;i++){
c[i][]=;
for (int j=;j<=i;j++)
c[i][j]=(c[i-][j-]+c[i-][j])%k;
}
for (int i=;i<=N-;i++){
if (!c[i][]) s[i][]++;
for (int j=;j<=i;j++){
s[i][j]=s[i][j-];
if (!c[i][j]) s[i][j]++;
}
}
while (T--){
ans=;
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++)
ans=ans+s[i][min(i,m)];
printf("%d\n",ans);
}
return ;
}
YYHS-NOIP2017SummerTraining0914-问题 A: 组合数问题的更多相关文章
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- 计算一维组合数的java实现
背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...
- Noip2016提高组 组合数问题problem
Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...
- C++单元测试 之 gtest -- 组合数计算.
本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...
- NOIP2011多项式系数[快速幂|组合数|逆元]
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- AC日记——组合数问题 落谷 P2822 noip2016day2T1
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 95 Solved: 33[Submit][Statu ...
- UOJ263 【NOIP2016】组合数问题
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
随机推荐
- TCP/IP拥塞控制
TCP/IP拥塞控制包括:慢启动和拥塞避免.其操作流程如下所述: 初始化.拥塞窗口cwnd = 1,慢启动门限ssthresh = 65535 如果没有发生拥塞 若 cwnd < ssthres ...
- OC-UICollectionView实现瀑布流
UICollectionView实现瀑布流 在iOS中可以实现瀑布流的目前已知的有2种方案: 使用UIScrollView自己封装一套,这种方案是应用于iOS6之前的,因为iOS6才出来UIColle ...
- spring集成mybatis实现mysql读写分离
前言 在网站的用户达到一定规模后,数据库因为负载压力过高而成为网站的瓶颈.幸运的是目前大部分的主流数据库都提供主从热备功能,通过配置两台数据库主从关系,可以将一台数据库的数据更新同步到另一台服务器上. ...
- ABP+AdminLTE+Bootstrap Table权限管理系统第五节--WBEAPI及SwaggerUI
一,Web API ABP的动态WebApi实现了直接对服务层的调用(其实病没有跨过ApiController,只是将ApiController公共化,对于这一点的处理类似于MVC,对服务端的 调用没 ...
- Zabbix监控nginx性能
编辑nginx的配置文件nging #配置ngx_status location /nginx_status{ stub_status on; access_log off; } #重启nginx # ...
- 解决js中post提交数据并且跳转到指定页面的问题总结
今天在开发中过程中遇到了这个问题,js中利用JQuery中的 $.post("url", id, function(){}); 这个方法是数据提交正常,但是后台处理完成之后跳转无法 ...
- python发布及调用基于SOAP的webservice
现如今面向服务(SOA)的架构设计已经成为主流,把公用的服务打包成一个个webservice供各方调用是一种非常常用的做法,而应用最广泛的则是基于SOAP协议和wsdl的webservice.本文讲解 ...
- 使用sed命令向文件中追加可变字符串
1.如何向文件追加可变字符串,有如下两种方法 sed -i '1a '$s'' filename sed -i "1a $s" filename 注意: 以上命令是假定向文件fil ...
- android 学习 ListView使用补充
前面两篇学习适配器的时候用的就是listview,主要是简单的添加,今晚在看了下listview滚动状态事件和动态加载数据,一个小demo. listview的滚动状态主要有三种,onScrollSt ...
- UNIX 高手的 10 个习惯
引言 当您经常使用某个系统时,往往会陷入某种固定的使用模式.有时,您没有养成以尽可能最好的方式做事的习惯.有时,您的不良习惯甚至会导致出现混乱.纠正此类缺点的最佳方法之一,就是有意识地采用抵制这些坏习 ...