Treap(树堆)
treap是排序二叉树的一种改进,因为排序二叉树有可能会造成链状结构的时候复杂度变成O(n^2)所以通过随机一个优先级的方法来维持每次让优先级最大的作为树根,然后形成一个满足:
A. 节点中的key满足排序二叉树(二叉查找树)
B. 节点中的“优先级”满足大顶堆。
可以证明通过这种方法维持的插入、删除、查找的期望时间复杂度为O(logn)
一、节点的定义:左右孩子用指针数组的形式储存
struct Node{
Node*ch[];//左右子树
int r;//优先值
int v;//值
int cmp(int x) const{
if(x==v)return -;
return x<v?:;//0在ch[0]中正好是左孩子,对应向左搜索和操作,1在ch[1]中是右孩子,对应向右搜索和操作
}
};
二、旋转:和大顶堆的调整方法类似,左旋和右旋,用于对优先级的堆排序,这里不会影响二叉排序树的性质,介绍一种位运算可以巧妙的进行左旋和右旋的选择——异或,相同为0,不同为1,那么x^1就是对x取反的操作。
现在以下图为例
o 表示的指向根节点的指针
有旋转的代码如下:
//左旋代码
k = o->ch[];
o->ch[] = k->ch[];
k->ch[] = o;
o = k;
//右旋代码
k = o->ch[];
o->ch[] = k->ch[];
k->ch[] = o;
o = k;
//两种代码可以写成一种,利用异或
void rotate(Node* &o,int d){//d = 0 左旋,d = 1 右旋
Node *k = o->ch[d^];
o->ch[d^] = k->ch[d];
k->ch[d] = o;
o = k;
}
三、插入: 在插入的时候除了要在满足排序二叉树的插入要求,即递归的操作之外,还要满足堆的相应操作,所以,要通过旋转来实现,下面是代码:
srand(time(NULL));
void insert(Node *&o, int x){
if(o==NULL){
o = new Node();
o->ch[] = o->ch[] = NULL;
o->v = x;
o->r = rand();
}
else {
int d = o->cmp(x);//如果要插入的值x比当前根节点的值小则d==0,向左子树寻找,这里可以看出定义指针数组的好处
insert(o->ch[d],x);
if(o->ch[d]->r > o->r) rotate(o,d^);//左孩子权值大右旋,右孩子权值大左旋
}
}
四、删除:如果待删除结点为叶子结点或只有一棵子树,则用其子树(可能为空)替代它即可。如果有两棵子树,则将孩子中优先级高的旋转到根,然后在另一棵子树中递归删除目标点。
代码如下:
void remove(Node *&o,int x){
int d = o->cmp(x);
if(d==-){//找到了
if(o->ch[] == NULL) o = o->ch[];
else if(o->ch[] == NULL) o = o->ch[];
else {
int d2 = ((o->ch[]->r)>(o->ch[]->r)?:);//删除节点的左孩子权值大右旋,右孩子权值大左旋
rotate(o,d2);
remove(o->ch[d2],x);
}
}
else remove(o->ch[d],x);
}
五、查找:在插入和查找前进行查找,防止特殊情况,代码如下
int find(Node*o, int x){
while(o!=NULL){
int d = o->cmp(x);
if(d==-) return ;//找到了
else o = o->ch[d];
}
return ;//不存在
}
六、应用,这个数据结构可以用来解决二叉排序树的超时问题
X]C71D1GEUN`5)H]T.png)
Treap(树堆)的更多相关文章
- BZOJ3224/LOJ104 普通平衡树 treap(树堆)
您需要写一种数据结构,来维护一些数,其中需要提供以下操作:1. 插入x2. 删除x(若有多个相同的数,因只删除一个)3. 查询x的排名(若有多个相同的数,因输出最小的排名)4. 查询排名为x的数5. ...
- 可旋转Treap(树堆)总结
树堆,在数据结构中也称Treap,是指有一个随机附加域满足堆的性质的二叉搜索树,其结构相当于以随机数据插入的二叉搜索树.其基本操作的期望时间复杂度为O(logn).相对于其他的平衡二叉搜索树,Trea ...
- treap(树堆)
一棵treap是一棵修改了结点顺序的二叉查找树,如图,显示一个例子,通常树内的每个结点x都有一个关键字值key[x],另外,还要为结点分配priority[x],它是一个独立选取的随机数. 假设所有的 ...
- 查找——图文翔解Treap(树堆)
之前我们讲到二叉搜索树,从二叉搜索树到2-3树到红黑树到B-树. 二叉搜索树的主要问题就是其结构与数据相关,树的深度可能会非常大,Treap树就是一种解决二叉搜索树可能深度过大的还有一种数据结构. T ...
- 树堆(Treap)学习笔记 2020.8.12
如果一棵二叉排序树的节点插入的顺序是随机的,那么这样建立的二叉排序树在大多数情况下是平衡的,可以证明,其高度期望值为 \(O( \log_2 n )\).即使存在一些极端情况,但是这种情况发生的概率很 ...
- Treap树的基础知识
原文 其它较好的的介绍:堆排序 AVL树 树堆,在数据结构中也称Treap(事实上在国内OI界常称为Traep,与之同理的还有"Tarjan神犇发明的"Spaly),是指有一个随 ...
- Treap树
Treap树算是一种简单的优化策略,这名字大家也能猜到,树和堆的合体,其实原理比较简单,在树中维护一个"优先级“,”优先级“ 采用随机数的方法,但是”优先级“必须满足根堆的性质,当然是“大根 ...
- 6天通吃树结构—— 第三天 Treap树
原文:6天通吃树结构-- 第三天 Treap树 我们知道,二叉查找树相对来说比较容易形成最坏的链表情况,所以前辈们想尽了各种优化策略,包括AVL,红黑,以及今天 要讲的Treap树. Treap树算是 ...
- Treap树 笔记
预备知识:二叉查找树.堆(heap).平衡二叉树(AVL)的基本操作(左旋右旋) 定义: Treap.平衡二叉树.Tree+Heap.树堆. 每个结点两个键值(key.priority). 性质1. ...
- 真·浅谈treap树
treap树是一种平衡树,它有平衡树的性质,满足堆的性质,是二叉搜索树,但是我们需要维护他 为什么满足堆的性质?因为每个节点还有一个随机权值,按照随机权值维持这个堆(树),可以用O(logn)的复杂度 ...
随机推荐
- bzoj 4824: [Cqoi2017]老C的键盘
Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...
- C#常用单词
C#语言需要的一些英语注释 About -----关于 abstract -----抽象的 Abstract ------抽象的 Accept -----接受 activat -----活跃 add ...
- Nodejs进阶:crypto模块中你需要掌握的安全基础
本文摘录自<Nodejs学习笔记>,更多章节及更新,请访问 github主页地址. 一. 文章概述 互联网时代,网络上的数据量每天都在以惊人的速度增长.同时,各类网络安全问题层出不穷.在信 ...
- vue监听scroll使用报错的解决办法
错误说明:在切换路由以后,依旧在其他页面触发了scroll有关的函数, 错误原因:在spa项目中,window对象是不变的,所以每次使用后需要销毁. 解决办法:vue的生命周期destroyed中销毁 ...
- 【http转https】其之二:申请Let's Encrypt颁发SSL证书
文:铁乐猫 2017年1月12日 申请Let's Encrypt颁发SSL证书 由 ISRG(Internet Security Research Group,互联网安全研究小组)提供服务, ISRG ...
- Vue-cli 创建的项目如何跨域请求
感谢BeArchitect的技术支持 问题描述: 使用 Vue-cli 创建的项目,开发地址是 localhost:8023,需要访问 localhost:9000 上的接口 分析原因: 不同域名之间 ...
- 微信小程序之页面路由
路由方式 简介 对于路由的触发方式以及页面生命周期函数如下: 路由方式 触发时机 路由前页面 路由后页面 初始化 小程序打开的第一个页面 onLoad, onSHow 打开新页面 调用 API w ...
- MySQL 配置文件my.cnf
转载: MySQL配置文件my.cnf 详解:#BEGIN CONFIG INFO#DESCR: 4GB RAM, 只使用InnoDB, ACID, 少量的连接, 队列负载大#TYPE: SYSTEM ...
- Hibernate学习笔记(5)---Query接口
Hibernate中具有三种检索方式(HQL,QBC,SQL) Query接口 一个查询接口,用于向数据库中查询对象.并控制执行查询的过程.Query接口内封装了一个HQL查询语句. 举个栗子 //查 ...
- Tomcat 快速入门
Tomcat 快速入门 版本说明 本文使用 Tomcat 版本为 Tomcat 8.5.24. Tomcat 8.5 要求 JDK 版本为 1.7 以上. 简介 Tomcat 是什么 Tomcat 是 ...