基于Spark和SparkSQL的NetFlow流量的初步分析——scala语言

标签: NetFlow Spark SparkSQL


本文主要是介绍如何使用Spark做一些简单的NetFlow数据的处理,是基于 IntelliJ IDEA开发SparkMaven项目,本文会介绍一些简单的NetFlow基础知识,以及如何在 IntelliJ IDEA 上开发Maven项目,用Scala 写的一些简单的NetFlow字段分析统计的代码,包括 SparkCore和SparkSQL两个版本的。

初步认识NetFlow

在开始写具体的分析代码之前,先要了解NetFlow的基本知识,和它的具体字段都代表什么意思。

我之前的一篇文章里有对于NetFlow的一些简单介绍。

http://www.cnblogs.com/wuyue3427/articles/7680578.html

下面是NetFlow数据和相对应的字段含义(每一行代表一条NetFlow数据)

可以看出NetFlow能很清晰的表现出我们需要的信息,方便我们做字段提取和处理。

使用IDEA开发Spark的Maven项目

这也有一篇详细介绍怎么安装IDEA和搭建Maven项目博客

http://blog.csdn.net/kwu_ganymede/article/details/51832427

Maven管理项目在JavaEE普遍使用,开发Spark项目也不例外,因此需要构建Maven-Scala项目来开发Spark项目。本文采用的工具是IntelliJ IDEA 2017,IDEA工具越来越被大家认可,开发java, python ,scala 支持都非常好,而Scala语言是开发Spark项目的首选。

上面那篇博客对如何安装搭建Spark的Maven项目包括安装Scala插件都有非常详细的介绍,这里我就不再过多阐述了。因为我们不光有Spark项目还要用到SparkSql,所以不能用那篇博客中的pom文件,我把我的pom文件粘到这。

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>MDemo4</groupId>
<artifactId>scm4</artifactId>
<version>1.0-SNAPSHOT</version>
<inceptionYear>2008</inceptionYear>
<properties>
<jackson.version>2.4.2</jackson.version>
<scala.version>2.10.5</scala.version>
<org.slft4j.version>1.6.1</org.slft4j.version>
<spark.version>1.5.2</spark.version> </properties> <repositories> <repository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</repository>
</repositories> <pluginRepositories>
<pluginRepository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</pluginRepository>
</pluginRepositories> <dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency> <dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.4</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.specs</groupId>
<artifactId>specs</artifactId>
<version>1.2.5</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-compiler</artifactId>
<version>${scala.version}</version>
<scope>compile</scope>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.10</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-csv_2.10</artifactId>
<version>1.4.0</version>
</dependency> <dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>${org.slft4j.version}</version>
</dependency> <dependency>
<groupId>org.slf4j</groupId>
<artifactId>jcl-over-slf4j</artifactId>
<version>${org.slft4j.version}</version>
</dependency> <dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>${org.slft4j.version}</version>
</dependency> <dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.15</version>
</dependency>
</dependencies> <build>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test</testSourceDirectory>
<plugins> <plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
<args>
<arg>-target:jvm-1.5</arg>
</args>
</configuration>
</plugin> </plugins>
</build> <reporting>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
</configuration>
</plugin>
</plugins>
</reporting>
</project>

这个pom文件里详细包含了Spark、SparkSQL、SparkStreaming的相关依赖,所以如果要开发其他的Spark项目也基本够用了。

下面就进入正题,怎么用Spark分析NetFlow数据

用Spark根据目的IP统计字节数

测试数据来源:

首先要解决的是数据来源问题,有两个方法,由flowd程序捕获或由flowfake伪造数据,落地形成文件。

本文用的是第二种方式伪造的数据,或者自己写脚本生成数据,但是无论哪种方式最后都要落地形成文件。我们读取数据的方式是从文件中读取。

数据生成之后可以直接只用也可以上传到HDFS中使用,两种方法区别不大。

直接上代码

import org.apache.spark.{SparkConf, SparkContext}
object SparkDemo1 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("SparkDemo").setMaster("local")
val sc = new SparkContext(conf)
val rdd1 = sc.textFile("hdfs:///home/fake/*")
//按照目的ip统计接受到的包数量
val rdd2 = rdd1
.map(m=>{(m.split("\\\t")(2),m.split("\\\t")(6).toInt)})
.reduceByKey(_+_)
.sortBy(_._2,false)
.repartition(1)
rdd2.saveAsTextFile("hdfs:///home/results")
}
}

因为是测试,所以用的运行方式是单机运行,也可以换成集群运行。

  • textFile表示从hdfs上获取数据,如果想读本地文件只需要把hdfs换成file即可
  • /*表示的是可以读取该目录下的所有文件
  • netflow数据字段之间是用制表符分割的
  • 在数据量大的情况下回进行默认分区,用repartition(1)可以将结果文件合并成一个,方便查看

提交到Spark系统上运行

首先先用Maven命令将代码打成jar包,IDEA提供了对Maven很好的支持,只用在右侧的Maven Projects栏中即可点击package命令进行打包。

也可以在Terminal窗口中输入命令mvn clean package命令进行打包,打好的jar包会存放在target文件夹下。

将jar包上传到Spark所在的系统中使用Spark的submit方式进行运行。

spark-submit --queue flow \
--class fake.SparkDemo1 \
/home/scm4-1.0-SNAPSHOT.jar

第二行指定的是main函数所在的路径,最后一行指定的是jar包所在的目录

最后运行得到的结果文件如下:

用SparkSQL进行多字段分组聚合查询

老规矩,先上代码

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql._
object SparkDemo3 {
def main(args: Array[String]): Unit = {
val conf=new SparkConf().setAppName("SparkDemo").setMaster("local")
val sc=new SparkContext(conf)
val sqlc=new SQLContext(sc)
import sqlc.implicits._
//选择日期,源ip,目的ip,字节4个字段,并做分组流量查询
sc.textFile("hdfs:///home/fake/*")
.map(x=>{(x.split("\\\t")(8),x.split("\\\t")(0),x.split("\\\t")(1),x.split("\\\t")(7))})
.repartition(1)
.toDF("time","rip","sip","bytes").registerTempTable("temp")
sqlc.sql("select max(time), rip, sip, sum(bytes) as bytes from temp group by rip, sip order by bytes desc limit 10")
.toJavaRDD
.saveAsTextFile("hdfs:///home/results") } }
  • 因为是直接从文件中读取数据,所以需要先读成RDD再转换成DataFream,最后写出文件之前还要再转回RDD。在本文中仅做测试,真实环境中一般是从hive中读取数据。

运行结果如下:

总结

本文介绍的都是一些最基本的Spark使用方式,仅适用于入门,欢迎大家一起探讨学习。

基于Spark和SparkSQL的NetFlow流量的初步分析——scala语言的更多相关文章

  1. 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用

    https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...

  2. Spark记录-SparkSql官方文档中文翻译(部分转载)

    1 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查 ...

  3. Spark 实践——基于 Spark Streaming 的实时日志分析系统

    本文基于<Spark 最佳实践>第6章 Spark 流式计算. 我们知道网站用户访问流量是不间断的,基于网站的访问日志,即 Web log 分析是典型的流式实时计算应用场景.比如百度统计, ...

  4. Spark系列-SparkSQL实战

    Spark系列-初体验(数据准备篇) Spark系列-核心概念 Spark系列-SparkSQL 之前系统的计算大部分都是基于Kettle + Hive的方式,但是因为最近数据暴涨,很多Job的执行时 ...

  5. hive on spark VS SparkSQL VS hive on tez

    http://blog.csdn.net/wtq1993/article/details/52435563 http://blog.csdn.net/yeruby/article/details/51 ...

  6. 基于Spark的电影推荐系统(推荐系统~2)

    第四部分-推荐系统-数据ETL 本模块完成数据清洗,并将清洗后的数据load到Hive数据表里面去 前置准备: spark +hive vim $SPARK_HOME/conf/hive-site.x ...

  7. 基于Spark的电影推荐系统(推荐系统~7)

    基于Spark的电影推荐系统(推荐系统~7) 22/100 发布文章 liuge36 第四部分-推荐系统-实时推荐 本模块基于第4节得到的模型,开始为用户做实时推荐,推荐用户最有可能喜爱的5部电影. ...

  8. 基于Spark的电影推荐系统(推荐系统~1)

    第四部分-推荐系统-项目介绍 行业背景: 快速:Apache Spark以内存计算为核心 通用 :一站式解决各个问题,ADHOC SQL查询,流计算,数据挖掘,图计算 完整的生态圈 只要掌握Spark ...

  9. 京东基于Spark的风控系统架构实践和技术细节

    京东基于Spark的风控系统架构实践和技术细节 时间 2016-06-02 09:36:32  炼数成金 原文  http://www.dataguru.cn/article-9419-1.html ...

随机推荐

  1. 第九章 MySQL中LIMIT和NOT IN案例

    第九章 MySQL中LIMIT和NOT IN案例 一.案例的项目 1.创建数据库语句: #创建数据库 CREATE DATABASE `schoolDB`; USE `schoolDB`; #创建学生 ...

  2. Masonry框架源码深度解析

    Masonry是iOS在控件布局中经常使用的一个轻量级框架,Masonry让NSLayoutConstraint使用起来更为简洁.Masonry简化了NSLayoutConstraint的使用方式,让 ...

  3. 容器中使用iptables报错can't initialize iptables table Permission denied (you must be root)

    背景 在docker容器中部署了一微服务,该服务需要docker push镜像到docker registry.因此,docker容器中需要安装docker服务.但在启动容器的时候,却报错: can' ...

  4. win10 UWP Controls by function

    Windows的XAML UI框架提供了很多控件,支持用户界面开发库.其中一些有可视化,一些布局. 一些控件例子:https://github.com/Microsoft/Windows-univer ...

  5. uva242,Stamps and Envelope Size

    这题紫薯上翻译错了 应该是:如果有多个并列,输出邮票种类最少的那个,如果还有并列,输出最大面值最小的那个 坑了我一个下午 dp[p][q]==1表示可以用不超过q张组成面额p 结合记忆化,p从1开始枚 ...

  6. mysql多实例-主从复制安装

    安装环境:Centos6.5 mysql版本:mysql-5.5.32.tar.gz 一:安装前准备: 1.安装一些依赖库 yum install cmake gcc gcc-c++ ncurses- ...

  7. iOS开发中使用文字图标iconfont

    在iOS的开发中,各种图标的使用是不可避免的,如果把全部图标做成图片放在项目中,那么随着项目的逐渐庞大起来,图片所占的地方就会越来越大,安装包也就随之变大了,如果图标需要根据不同的场景改变使用不同的颜 ...

  8. javascript方法的方法名慎用close

    通常我们在定义了与window同名的方法时,会自动覆盖掉window同名的方法.close()方法也不例外.示例: <!DOCTYPE html PUBLIC "-//W3C//DTD ...

  9. 对foreach循环的思考

    阿里java开发手册已经发表,很多都值得认真研究思考,看到零度的思考题,没忍住研究了一下. 零度的思考:https://mp.weixin.qq.com/s/dDR21k30s6ZVfDvl8BVQm ...

  10. enum(枚举类型)

    可以使用枚举类型声明代表整数常量的符号名称. 通过enum,创建一个新类型,并指定它可以拥有的值.(就像平常用一个整形变量,我们指定它等于0的时候代表什么,1呢,2呢...而通过枚举,就增加了程序的可 ...